Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Acidic environment causes apoptosis by increasing caspase activity
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 30 July 1999

Acidic environment causes apoptosis by increasing caspase activity

  • H J Park1,2,
  • J C Lyons1,
  • T Ohtsubo1 &
  • …
  • C W Song1 

British Journal of Cancer volume 80, pages 1892–1897 (1999)Cite this article

  • 2392 Accesses

  • 160 Citations

  • 6 Altmetric

  • Metrics details

This article has been updated

Summary

An exposure of HL-60 human promyelocytic leukaemia cells to acidic media with pH 6.2–6.6 caused an up-regulation of Bax protein expression within 2 h, which lasted for longer than 6 h. On the other hand, the apoptosis, as judged from PARP cleavage, DNA fragmentation and flow cytometric determination of cell population with sub-G1 DNA content, occurred after the cells were incubated in the acidic media for longer than 4 h. The PARP cleavage and DNA fragmentation in the cells exposed to an acidic environment could be effectively suppressed by inhibitors specific for ICE or CPP32, indicating that activation of these caspases is an essential step in acidic stress-induced apoptosis. It has been known that Bax is involved in the activation of caspases. Taken together, it appears that acidic stress first up-regulates Bax protein thereby activating caspases followed by PARP cleavage and DNA fragmentation. The observation that inhibition of either ICE or CPP32 could suppress acidic stress-induced apoptosis suggested that ICE activates pro-CPP32, which then cleaves PARP. Flow cytometric analysis indicated that acidic stress-induced apoptosis occurs mainly in G1 cells. The finding in the present study demonstrated that acidic intra-tumour environment may markedly perturb the tumour cell proliferation and tumour growth.

Similar content being viewed by others

Severely polarized extracellular acidity around tumour cells

Article 04 March 2024

How protons pave the way to aggressive cancers

Article 26 October 2023

Effectiveness and mechanism of cisplatin combined with PDT on human lung adenocarcinoma A549 cells transplanted tumor in nude mice

Article Open access 24 March 2025

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Aisenberg, A. C. (1961). The anaerobic and aerobic glycolysis of normal and tumor tissues. In The Glycolysis and Respiration of Tumors, Academic Press: New York 1–53.

    Google Scholar 

  • Casciola-Rosen, L. A., Anhalt, G. J. & Rosen, A. (1995). DNA-dependent protein kinase is one of a subset of autoantigens specifically cleared early during apoptosis. J Exp Med 182: 1625–1634.

    Article  CAS  Google Scholar 

  • Chu, G. & Dewey, W. C. (1988). The role of low intracellular or extracellular pH in sensitization to hyperthermia. Radiat Res 114: 154–167.

    Article  CAS  Google Scholar 

  • Craig, R. W. (1995). The bcl-2 gene family. Semin Cancer Biol 6: 35–43.

    Article  CAS  Google Scholar 

  • Darmon, A. J., Nicholson, D. W. & Bleackley, R. C. (1995). Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Natural 377: 466–448.

    Article  Google Scholar 

  • Darzynkiewicz, A., Bruno, S., Bino, G. D., Gorczyca, W., Hotz, M. A., Lassota, P. & Traganos, F. (1992). Feature of apoptotic cells measured by flow cytometry. Cytometry 13: 795–808.

    Article  CAS  Google Scholar 

  • Dewey, W. C., Ling, C. C. & Meyn, R. E. (1995). Radiation-induced apoptosis: relevance to radiotherapy. Int J Radiat Oncol Biol Phys 33: 781–796.

    Article  CAS  Google Scholar 

  • Duan, H., Chinnaiyan, A. M., Hudson, P. L., Wing, J. P., He, W. W. & Dixit, V. M. (1996). ICE-AP3, a novel mammalian homologue of the Caenorhabditis elegans cells death protein Ced 3, is activated during Fas- and tumor necrosis factor-induced apoptosis. J Biol Chem 271: 1621–1625.

    Article  CAS  Google Scholar 

  • Enari, M., Sakahira, H., Yokoyama, H., Iwamatsa, A. & Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor/CAD. Nature 391: 43–50.

    Article  CAS  Google Scholar 

  • Furlong, I. J., Ascaso, R., Rivas, A. L. & Collins, M. K. L. (1997). Intracellular acidification induces apoptosis by stimulating ICE-like protease activity. J Cell Science 110: 653–661.

    CAS  PubMed  Google Scholar 

  • Griffiths, J. J. (1991). Are cancer cells acidic? Br J Cancer 64: 425–427.

    Article  CAS  Google Scholar 

  • Gullino, P. M. (1975). Extracellular compartments of solid tumors. In Biology of Tumors: Cellular Biology and Growth, Backer JJ (ed) cancer 3: Plenum Press: New York 327–354.

    Chapter  Google Scholar 

  • Haveman, J. (1979). The pH of the cytoplasm as an important factor in the survival of vitro cultured malignant cells after hyperthermia. Effects of carbonylcyanide-3-chlorophylhydrazone. Eur J Cancer 15: 1281–1288.

    Article  CAS  Google Scholar 

  • Jahde, E., Glusenkamp, K. H., Klunder, I., Hulser, D. F., Tietze, L. F. & Rajewsky, M. F. (1989). Hydrogen ion-mediated enhancement of cytotoxicity of bis-chlorethylating drug in rat mammary carcionoma cells in vitro. Cancer Res 49: 2965–2972.

    CAS  PubMed  Google Scholar 

  • Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E. & Poirier, G. G. (1993). Specific proteolytic cleavage of poly(ADP)-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53: 3976–3985.

    CAS  PubMed  Google Scholar 

  • Kim, G. E., Lyons, J. C., Levitt, S. H. & Song, C. W. (1991). Effects of amiloride on intracellular pH and thermosensitivity. Int J Radiat Oncol Biol Phys 20: 541–549.

    Article  CAS  Google Scholar 

  • Kumar, S. & Lavin, M. F. (1996). The ICE family of cysteine proteases as effectors of cell death. Cell Death Differ 3: 255–267.

    CAS  PubMed  Google Scholar 

  • Lazebnik, Y. A., Kaufman, S. H., Desnoyers, S., Poirier, G. G. & Earnshaw, W. C. (1994). Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371: 346–347.

    Article  CAS  Google Scholar 

  • Lee, H. S., Park, H. J., Lyons, J. C., Griffin, R. J., Auger, E. A. & Song, C. W. (1997). Radiation-induced apoptosis in different pH environments in vitro. Int J Radiat Oncol Biol Phys 38: 1079–1087.

    Article  CAS  Google Scholar 

  • Liu, J. C. K. & Fox, M. H. (1995). Modification of intracellular pH and thermotolerance development by amiloride. Int J Hyperthermia 11: 511–523.

    Article  CAS  Google Scholar 

  • Liu, F-F, Sherar, M. D. & Hill, R. P. (1996). The relationship between intracellular pH and heat sensitivity in a thermoresistant cell line. Radiat Res 145: 144–149.

    Article  CAS  Google Scholar 

  • Negri, C., Bernardi, R., Braghetti, A., Ricotti, G. C. & Scovassi, A. I. (1993). The effect of the chemotherapeutic drug VP-16 on poly(ADP-ribosylation) in apoptotic HeLa cells. Carcinogenesis 14: 2559–2564.

    Article  CAS  Google Scholar 

  • Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y., Griffin, P. R., Labelle, M. & Lazebnik, Y. A. et al (1995). Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37–43.

    Article  CAS  Google Scholar 

  • Park, H. J., Makepeace, C. M., Lyons, J. C. & Song, C. W. (1996). Effect of intracellular acidity and ionomycin on apoptosis in HL-60 cells. Eur J Cancer 32A: 540–546.

    Article  CAS  Google Scholar 

  • Ramage, P., Cheneval, D., Chvei, M., Graff, P., Hemming, R., Heng, R., Kocher, H. P., Mackenzie, A., Memmert, K. & Revesz, L. et al (1995). Expression, refolding and autocatalytic proteolytic processing of the interleukin-1β-converting enzyme precursor. J Biol Chem 270: 9378–9383.

    Article  CAS  Google Scholar 

  • Sakahira, H., Enari, M. & Nagata, S. (1998). Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391: 96–99.

    Article  CAS  Google Scholar 

  • Schlegel, J., Peters, I., Orrenius, S., Miller, D. K., Thornberry, N. A., Yamin, T-T & Nicholson, D. W. (1996). CPP32/Apopain is a key Interleukin 1β converting enzyme-like protease involved in Fas-mediated apoptosis. J Biol Chem 271: 1841–1844.

    Article  CAS  Google Scholar 

  • Song, C. W., Lyons, J. C., Griffin, R. J., Makepeace, C. M. & Cragoe, E. J. Jr (1993a). Increase in thermosensitivity of tumor cells by lowering intracellular pH. Cancer Res 53: 1599–1601.

    CAS  PubMed  Google Scholar 

  • Song, C. W., Lyons, J. C. & Luo, Y. (1993b). Intra- and extracellular pH in solid tumors: Influence on therapeutic response. In Drug Resistance in Oncology, B Teicher (ed), pp. 25–51. Marcel Dekker: New York

    Google Scholar 

  • Song, C. W., Kim, G. E., Lyons, J. C., Makepeace, C. M., Griffin, R. J., Rao, G. H. & Cragoe, Jr E. J. (1994). Thermosensitization by increasing intracellular acidity with amiloride and its analogs. Int J Radiat Oncol Biol Phys 30: 1161–1169.

    Article  CAS  Google Scholar 

  • Song, Q., Lees-Miller, S. P., Kumar, S., Zhang, Z. N., Chan, D. W., Smith, G. C., Jackson, S. P., Alnemri, E. S., Litwack, G. & Khanna, K. K. et al (1996). DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO. J 15: 3238–3246.

    Article  CAS  Google Scholar 

  • Takahshi, A. & Earnshaw, W. C. (1996). ICE-related proteases in apoptosis. Curr Opin Genet Dev 6: 50–55.

    Article  Google Scholar 

  • Takasu, T., Lyons, J. C., Park, H. J. & Song, C. W. (1998). Apoptosis and perturbation of cell cycle progression in an acidic environment after hyperthermia. Cancer Res 58: 2504–2508.

    CAS  PubMed  Google Scholar 

  • Tannock, I. F. & Rotin, D. (1989). Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49: 4373–4384.

    CAS  PubMed  Google Scholar 

  • Whitacre, C. M., Hashimoto, H., Tsai, M. L., Chatterjee, S., Berger, S. J. & Berger, N. A. (1995). Involvement of NAD-poly(ADP-ribose) metabolism in p53 regulation and its consequence. Cancer Res 55: 3697–3701.

    CAS  PubMed  Google Scholar 

  • Wike-Hooley, J. L., Haveman, J. & Reinhold, H. S. (1984). The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2: 344–366.

    Article  Google Scholar 

  • Wolf, C. M., Reynolds, J. E., Morana, S. J. & Eastman, A. (1997). The temporal relationship between protein phosphatase, ICE/CED-3 proteases, intracellular acidification, and DNA fragmentation in apoptosis. Exp Cell Res 230: 22–27.

    Article  CAS  Google Scholar 

  • Wolf, D. & Rotter, V. (1985). Major deletions in the gene encoding the p53 tumor antigen causes lack of p53 expression in HL-60 cells. Proc Natl Acad Sci USA 82: 790–794.

    Article  CAS  Google Scholar 

  • Yoshida, A., Pourquier, P. & Pommier, Y. (1998). Purification and characterization of a Mg2+-dependent endonuclease (AN34) from etoposide-treated human leukemia HL-60 cells undergoing apoptosis. Cancer Res 58: 2576–2582.

    CAS  PubMed  Google Scholar 

  • Yoshihara, K., Tanigawa, Y. K., Burzio, L. & Koide, S. S. (1975). Evidence of adenosine diphosphate ribosylation of Ca2+, Mg2+-dependent endonuclease. Proc Natl Acad Sci USA 72: 289–293.

    Article  CAS  Google Scholar 

  • Zanke, B. W., Lee, C., Arab, S. & Tannock, I. F. (1998). Death of tumor cells after intracellular acidification is dependent on stress-activated protein kinases (SAPK/JNK) pathway activation and cannot be inhibited by Bcl-2 expression or interleukin 1 β-converting enzyme inhibition. Cancer Res 58: 2801–2808.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Therapeutic Radiology–Radiation Oncology, University of Minnesota Medical School, 420 Delaware St SE, Box 494, Mayo, Minneapolis, 55455, MN, USA

    H J Park, J C Lyons, T Ohtsubo & C W Song

  2. Department of Microbiology, Inha University, College of Medicine, 253 Yong-Hyun Dong, Nam-Gu, Inchon, 402-751, Korea

    H J Park

Authors
  1. H J Park
    View author publications

    Search author on:PubMed Google Scholar

  2. J C Lyons
    View author publications

    Search author on:PubMed Google Scholar

  3. T Ohtsubo
    View author publications

    Search author on:PubMed Google Scholar

  4. C W Song
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Park, H., Lyons, J., Ohtsubo, T. et al. Acidic environment causes apoptosis by increasing caspase activity. Br J Cancer 80, 1892–1897 (1999). https://doi.org/10.1038/sj.bjc.6690617

Download citation

  • Received: 23 November 1998

  • Revised: 04 March 1999

  • Accepted: 09 March 1999

  • Published: 30 July 1999

  • Issue date: 01 August 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690617

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • apoptosis
  • acidic stress
  • pHi
  • caspases
  • PARP cleavage
  • Bax

This article is cited by

  • A general degenerate reaction-diffusion model for acid-mediated tumor invasion

    • Fang Li
    • Zheng-an Yao
    • Ruijia Yu

    Zeitschrift für angewandte Mathematik und Physik (2024)

  • The potential role of reprogrammed glucose metabolism: an emerging actionable codependent target in thyroid cancer

    • Sai-li Duan
    • Min Wu
    • Shi Chang

    Journal of Translational Medicine (2023)

  • Brain tumor acidification using drugs simultaneously targeting multiple pH regulatory mechanisms

    • Mohammed Albatany
    • Valeriy G. Ostapchenko
    • Robert Bartha

    Journal of Neuro-Oncology (2019)

  • The Monocarboxylate transporter inhibitor Quercetin induces intracellular acidification in a mouse model of Glioblastoma Multiforme: in-vivo detection using magnetic resonance imaging

    • Mohammed Albatany
    • Susan Meakin
    • Robert Bartha

    Investigational New Drugs (2019)

  • A kinetic view of acid-mediated tumor invasion

    • Ahmed M. Fouad

    European Biophysics Journal (2018)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited