Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Detection of loss of heterozygosity at RAD51, RAD52, RAD54 and BRCA1 and BRCA2 loci in breast cancer: pathological correlations
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 10 September 1999

Detection of loss of heterozygosity at RAD51, RAD52, RAD54 and BRCA1 and BRCA2 loci in breast cancer: pathological correlations

  • R Gonzalez1,
  • J M Silva1,
  • G Dominguez1,
  • J M Garcia1,
  • G Martinez2,
  • J Vargas3,
  • M Provencio1,
  • P España1 &
  • …
  • F Bonilla1 

British Journal of Cancer volume 81, pages 503–509 (1999)Cite this article

  • 1097 Accesses

  • 63 Citations

  • Metrics details

This article has been updated

Summary

Loss of heterozygosity (LOH) in loci of the 15q15.1, 12p13, 1p32, 17q21 and 13q12–13 regions may collaborate in the inactivation of RAD51, RAD52, RAD54, BRCA1, BRCA2 and possibly other genes implicated in the repair of double-stranded DNA and in DNA recombination. We investigate allelic losses in microsatellites of the RAD51, RAD52, RAD54, BRCA1 and BRCA2 regions, and their correlations with nine pathologic parameters in 127 breast carcinomas. The LOH analysis was performed by amplifying DNA by PCR, using 15 markers of the 15q15.1, 12p13.3, 1p32, 17q21 and 13q12–13 regions. LOH was found in the RAD51 region in 32% of tumours, in the RAD52 region in 16%, in RAD54 in 20% and in the BRCA1 and BRCA2 regions in 49% and 44% respectively. Significant correlations between one or more regions with concomitant LOH and pathologic parameters were observed with respect to age (P = 0.008), oestrogen receptor content (P = 0.03), progesterone receptors (P = 0.003), higher grade (P = 0.001), more advanced stage (P = 0.004) and peritumoural vessel involvement (P < 0.0001). The number of cases in which LOH was observed simultaneously in two or more regions was always higher than expected on the basis of their statistical probability, and curiously, the three patients with LOH at five regions concomitantly were under the age of 30 years. These results suggest that LOH at these regions could be related to breast cancer, and probably to a poor tumour prognosis.

Similar content being viewed by others

Genetic and clinical landscape of breast cancers with germline BRCA1/2 variants

Article Open access 16 October 2020

Analysis of matched primary and recurrent BRCA1/2 mutation-associated tumors identifies recurrence-specific drivers

Article Open access 07 November 2022

ABRAXAS1 orchestrates BRCA1 activities to counter genome destabilizing repair pathways—lessons from breast cancer patients

Article Open access 17 May 2023

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Beckmann, MW, Picard, F, An, HX, Van Roeyen, CRC, Dominik, SI, Mosny, DS, Schnurch, HG, Bender, HG & Niederacher, D (1996). Clinical impact of detection of loss of heterozygosity of BRCA1 and BRCA2 markers in sporadic breast cancer. Br J Cancer 73: 1220–1226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson, FE, Stasiak, A & West, SC (1994). Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA. EMBO J 13: 5764–5771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bièche, I & Lidereau, R (1995). Genetic alterations in breast cancer. Genes Chromosomes Cancer 14: 227–251.

    Article  PubMed  Google Scholar 

  • Chapman, MS & Verma, IM (1996). Transcriptional activation by BRCA1. Nature 382: 678–679.

    Article  CAS  PubMed  Google Scholar 

  • Cleton-Jansen, A-M, Collins, N, Lakhani, SR, Weissenbach, J, Devilee, P, Cornelisse, CJ & Stratton, MR (1995). Loss of heterozygosity in sporadic breast tumours at the BRCA2 locus on chromosome 13q12–q13. Br J Cancer 72: 1241–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor, F, Bertwistle, D, Mee, PJ, Ross, GM, Swift, S, Grigorieva, E, Tybulewicz, VLJ & Ashworth, A (1997). Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nature Genet 17: 423–430.

    Article  CAS  PubMed  Google Scholar 

  • Devilee, P & Cornelisse, C (1994). Somatic genetic changes in human breast cancer. Biochim Biophys Acta 1198: 113–130.

    PubMed  Google Scholar 

  • Ellis, NA, Groden, J, Ye, TZ, Straughen, J, Lennon, DJ, Ciocci, S, Proytcheva, M & German, J (1995). The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83: 655–666.

    Article  CAS  PubMed  Google Scholar 

  • Harris, JR, Morrow, M & Norton, L (1997). Malignant tumors of the breast. In: Cancer Principles and Practice of Oncology, 5th edn.DeVita VT, Hellman S, Rosemberg SA Lippincott-Noreu: Philadelphia 2: 1557–1616.

    Google Scholar 

  • Kerangueven, F, Noguchi, T, Coulier, F, Allione, F, Wargniez, V, Simony-Lafontaine, J, Longy, M, Jackemier, J, Sobol, H, Eisinger, F & Birnbaum, D (1997). Genome-wide search for loss of heterozygosity shows extensive genetic diversity of human breast carcinomas. Cancer Res 57: 5469–5474.

    CAS  PubMed  Google Scholar 

  • Lancaster, JM, Wooster, R, Mangion, J, Phelan, CM, Cochran, C, Gumbs, C, Seal, S, Barfoof, R, Collins, N, Bignell, G, Patel, S, Hamoudi, R, Larson, C, Wiseman, RW, Berchuck, A, Iglehart, JD, Marks, JR, Ashworth, A, Stratton, MR & Futreal, PA (1996). BRCA2 mutations in primary breast and ovarian cancers. Nature Genet 13: 238–240.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig, T, Chapman, DL, Papaioannou, VE & Efstratiadis, A (1997). Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brcal, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev 11: 1226–1241.

    Article  CAS  PubMed  Google Scholar 

  • Marmorstein, LY, Ouchi, T & Aaronson, SA (1998). The BRCA2 gene product functionally interacts with p53 and RAD51. Proc Natl Acad Sci USA 95: 13869–13874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matson, SW & Kaiser-Rogers, KA (1990). DNA helicases. Annu Rev Biochem 59: 289–329.

    Article  CAS  PubMed  Google Scholar 

  • Milner, J, Ponder, B, Hughes-Davies, L, Seltman, M & Kouzarides, T (1997). Transcriptional activation functions in BRCA2. Nature 386: 772–773.

    Article  CAS  PubMed  Google Scholar 

  • Miki, Y, Katagiri, T, Kasumi, F, Yoshimoto, T & Nakamura, Y (1996). Mutation analysis in the BRCA2 gene in primary breast cancers. Nature Genet 13: 245–247.

    Article  CAS  PubMed  Google Scholar 

  • Muris, DAR, Bezzuvoba, O, Buerstedde, JM, Vreeken, K, Balajee, AS, Osgood, CJ, Troelstra, C, Hoeijmakers, JHJ, Osterman, K, Schmidt, H, Natarajan, AT, Eeken, JCJ, Lohman, PHM & Pastink, A (1994). Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination. Mutation Res 315: 295–305.

    Article  CAS  PubMed  Google Scholar 

  • Oto, M, Miyake, S & Yuasa, Y (1993). Optimization of nonradioisotopic single strand conformation polymorphism analysis with a conventional minislab gel electrophoresis apparatus. Ann Biochem 213: 19–22.

    Article  CAS  Google Scholar 

  • Park, MS (1995). Expression of human RAD52 confers resistance to ionizing radiation in mammalian cells. J Biol Chem 270: 15467–15470.

    Article  CAS  PubMed  Google Scholar 

  • Park, MS, Ludwig, DL, Stigger, E & Lee, S-H (1996). Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells. J Biol Chem 271: 18996–18200.

    Article  CAS  PubMed  Google Scholar 

  • Phelan, CM, Borg, A, Cuny, M, Crichton, DN, Baldersson, T, Andersen, TI, Caligo, MA, Lidereau, R, Lidblom, A, Seitz, S, Kelsell, D, Hamann, U, Rio, P, Thorlacious, S, Papp, J, Olah, E, Ponder, B, Bignon, YJ, Scherneck, S, Barkardottir, R, Borresen-Dale, AL, Eyfjörd, J, Theillet, C, Thompson, AM, Devilee, P & Larsson, C (1998). Consortium study on 1280 breast carcinomas: allelic loss on chromosome 17 targets subregions associated with family history and clinical parameters. Cancer Res 58: 1004–1012.

    CAS  PubMed  Google Scholar 

  • Rasio, D, Murakumo, Y, Robbins, D, Roth, T, Silver, A, Negrini, M, Schmidt, C, Burczak, J, Fishel, R & Croce, CM (1997). Characterization of the human homologue of RAD54: A gene located on chromosome 1p32 at a region of high loss of heterozygosity in breast tumors. Cancer Res 57: 2378–2383.

    CAS  PubMed  Google Scholar 

  • Scully, R, Chen, J, Plug, A, Xiao, Y, Weaver, D, Feunteun, J, Ashley, T & Livingston, DM (1997). Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88: 265–275.

    Article  CAS  PubMed  Google Scholar 

  • Sharan, SK, Morimatsu, M, Albrecht, U, Lim, D-S, Regel, E, Dinh, C, Sands, A, Eichele, G, Hasty, P & Bradley, A (1997). Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386: 804–810.

    Article  CAS  PubMed  Google Scholar 

  • Shen, Z, Cloud, KJ, Chen, DJ & Park, MS (1996). Specific interaction between the human RAD51 and RAD52 proteins. J Biol Chem 271: 148–152.

    Article  CAS  PubMed  Google Scholar 

  • Shinohara, A, Ogawa, H, Matsuda, Y, Ushio, N, Ikeo, K & Ogawa, T (1993). Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nature Genet 4: 239–243.

    Article  CAS  PubMed  Google Scholar 

  • Somasundaram, K, Zhang, H, Zeng, YX, Houvras, Y, Peng, Y, Zhang, H, Wu, GS, Licht, JD, Weber, BL & El-Deiry, WS (1997). Arrest of the cell cycle by the tumor-suppressor BRCA1 requires the CDK-inhibitor p21WAF1/CIP1. Nature 389: 187–190.

    Article  CAS  PubMed  Google Scholar 

  • Stürzbecher, HW, Donzelmann, B, Henning, W, Knippschild, U & Buchhop, S (1996). p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J 15: 1992–2002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sung, P, Bailly, V, Weber, C, Thompson LH Prakash, L & Prakash, S (1993). Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365: 852–855.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, A, De La Pompa, JL, Hakem, R, Elia, A, Yoshida, R, Mo, R, Nishina, H, Chuang, T, Wakeham, A, Itie, A, Koo, W, Billia, P, Ho, A, Fukumoto, M, Hui, CC & Mak, TW (1997). Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev 11: 1242–1252.

    Article  CAS  PubMed  Google Scholar 

  • Teng, DH-F, Bogden, R, Mitchell, J, Baumgard, M, Bell, R, Berry, S, Davis, T, Ha, PC, Kehrer, R, Jammulapati, S, Chen, Q, Offit, K, Skolnick, MH, Tavtigian, SV, Jhanwar, S, Swedlund, B, Wong, AKC & Kamb, A (1996). Low incidence of BRCA2 mutations in breast carcinoma and other cancers. Nature Genet 13: 241–244.

    Article  CAS  PubMed  Google Scholar 

  • van der Berg, J, Johannsson, O, Hakansson, S, Olsson, H & Borg, A (1996). Allelic loss at chromosome 13q12–q13 is associated with poor prognosis in familial and sporadic breast cancer. Br J Cancer 74: 1615–1619.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departments of Medical Oncology, Clinica Puerta de Hierro, Madrid, Spain

    R Gonzalez, J M Silva, G Dominguez, J M Garcia, M Provencio, P España & F Bonilla

  2. Departments of Pathology, Clinica Puerta de Hierro, Madrid, Spain

    G Martinez

  3. Department of Pathology, Hospital Santa Cristina, Madrid, Spain

    J Vargas

Authors
  1. R Gonzalez
    View author publications

    Search author on:PubMed Google Scholar

  2. J M Silva
    View author publications

    Search author on:PubMed Google Scholar

  3. G Dominguez
    View author publications

    Search author on:PubMed Google Scholar

  4. J M Garcia
    View author publications

    Search author on:PubMed Google Scholar

  5. G Martinez
    View author publications

    Search author on:PubMed Google Scholar

  6. J Vargas
    View author publications

    Search author on:PubMed Google Scholar

  7. M Provencio
    View author publications

    Search author on:PubMed Google Scholar

  8. P España
    View author publications

    Search author on:PubMed Google Scholar

  9. F Bonilla
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Gonzalez, R., Silva, J., Dominguez, G. et al. Detection of loss of heterozygosity at RAD51, RAD52, RAD54 and BRCA1 and BRCA2 loci in breast cancer: pathological correlations. Br J Cancer 81, 503–509 (1999). https://doi.org/10.1038/sj.bjc.6690722

Download citation

  • Received: 05 January 1999

  • Revised: 17 March 1999

  • Accepted: 20 April 1999

  • Published: 10 September 1999

  • Issue date: 01 October 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690722

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • RAD51
  • RAD52
  • RAD54
  • BRCA1
  • BRCA2
  • LOH

This article is cited by

  • BLM and RAD51 Genes Polymorphism and Susceptibility to Breast Cancer

    • Agnieszka Sassi
    • Marcin Popielarski
    • Katarzyna Wozniak

    Pathology & Oncology Research (2013)

  • RAD51 polymorphisms and breast cancer risk

    • Mojgan Hosseini
    • Massoud Houshmand
    • Ahmad Ebrahimi

    Molecular Biology Reports (2013)

  • RAD51 135G/C polymorphism and breast cancer risk: a meta-analysis from 21 studies

    • Lin-Bo Gao
    • Xin-Min Pan
    • Lin Zhang

    Breast Cancer Research and Treatment (2011)

  • Comprehensive screen of genetic variation in DNA repair pathway genes and postmenopausal breast cancer risk

    • Genevieve M. Monsees
    • Peter Kraft
    • Jiali Han

    Breast Cancer Research and Treatment (2011)

  • Prevalence and predictors of loss of wild type BRCA1 in estrogen receptor positive and negative BRCA1-associated breast cancers

    • Nadine Tung
    • Alexander Miron
    • Andrea L Richardson

    Breast Cancer Research (2010)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited