Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase, creatine kinase and enolase activity and isoenzymes in breast carcinoma
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 10 December 1999

Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase, creatine kinase and enolase activity and isoenzymes in breast carcinoma

  • N Durany1,
  • J Joseph1,
  • O M Jimenez1,
  • F Climent1,
  • P L Fernández2,
  • F Rivera3 &
  • …
  • J Carreras1 

British Journal of Cancer volume 82, pages 20–27 (2000)Cite this article

  • 2119 Accesses

  • 69 Citations

  • 3 Altmetric

  • Metrics details

This article has been updated

Abstract

We have compared the levels of phosphoglycerate mutase (EC 5.4.2.1), 2,3-bisphosphoglycerate phosphatase (EC 3.1.3.13), creatine kinase (EC 2.7.3.2) and enolase (EC 4.2.1.11) activities and the distribution of their isoenzymes in normal breast tissue and in breast carcinoma. Tumour tissue had higher phosphoglycerate mutase and enolase activity than normal tissue. Creatine kinase activity was higher in seven out of 12 tumours. In contrast 2,3-bisphosphoglycerate phosphatase activity was lower. Phosphoglycerate mutase, enolase and 2,3-bisphosphoglycerate phosphatase presented greater changes in the oestrogen receptor-negative/progesterone receptor-negative breast carcinomas than in the steroid receptor-positive tumours. Determined by electrophoresis, type BB phosphoglycerate mutase, type BB creatine kinase and αα-enolase were the major isoenzymes detected in normal breast tissue. Types αγ and γγ enolase, types MB and MM phosphoglycerate mutase were detected in much lower proportions. In tumours a decrease of phosphoglycerate mutase isoenzymes possessing M-type subunit and some increase of enolase isoenzymes possessing γ-type subunit was observed. No detectable change was observed in the creatine kinase phenotype. © 2000 Cancer Research Campaign

Similar content being viewed by others

Hypoxia-induced downregulation of PGK1 crotonylation promotes tumorigenesis by coordinating glycolysis and the TCA cycle

Article Open access 12 August 2024

Significant impact of circulating tumour DNA mutations on survival in metastatic breast cancer patients

Article Open access 24 March 2021

Molecular basis for the regulation of human phosphorylase kinase by phosphorylation and Ca2+

Article Open access 28 March 2025

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Bais R and Edwards J (1982) Creatine kinase. Crit Rev Clin Lab Sci 16: 291–335

    Article  CAS  Google Scholar 

  • Bartrons R and Carreras J (1982) Purification and characterization of phosphoglycerate mutase isoenzymes from pig heart. Biochim Biophys Acta 708: 167–177

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  CAS  Google Scholar 

  • Carreras J and Gallego C (1993) Metabolism of 2,3-bisphosphoglyceric acid in erythroid cells and tissues of vertebrates. Trends Comp Biochem Physiol 1: 421–450

    Google Scholar 

  • Carreras J, Bartrons R, Climent F and Cussó R (1986) Bisphosphorylated metabolites of glycerate, glucose and fructose: functions, metabolism and molecular patholgy. Clin Biochem 19: 348–358

    Article  CAS  Google Scholar 

  • Chastain S, Ketchum C and Grizzle W (1988) Stability and electrophoretic characteristics of creatine kinase BB extracted from human brain and intestine. Clin Chem 334: 489–492

    Google Scholar 

  • Crabtree B, Leech A and Newsholme A (1979) Measurement of enzyme activities in crude extracts of tissues. In: Techniques in the Live Sciences Vol B2/1, Kornberg HL, Metcalfe JC, Northcote DH, Pogson CI, Tipton KF (eds), B211/1–B211/37. Elservier/North Holland Biomedical Press: Amsterdam

    Google Scholar 

  • Desjardins P (1982) Characterization of an atypical creatine kinase from human heart tissue, with properties similar to those of mitochondrial creatine kinase. Clin Chim Acta 121: 67–78

    Article  CAS  Google Scholar 

  • Durany N and Carreras J (1996) Distribution of phosphoglycerate mutase isozymes in rat, rabbit and human tissues. Comp Biochem Physiol 113: 217–223

    Article  Google Scholar 

  • Durany N, Joseph J, Campo E, Molina R and Carreras J (1997 a) Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase and enolase activity and isoenzymes in lung, colon and liver carcinomas. Br J Cancer 76: 969–977

    Article  Google Scholar 

  • Durany N, Joseph J, Cruz-Sanchez F and Carreras J (1997 b) Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase and creatine kinase activity and isoenzymes in human brain tumours. Br J Cancer 76: 1139–1149

    Article  CAS  Google Scholar 

  • Erikstein B, Nesland J, Ottestad L, Lund E and Johannessen J (1988) Neuron-specific enolase-positive breast carcinomas. Histol Histopathol 3: 97–102

    CAS  PubMed  Google Scholar 

  • Foreback C and Chu J (1981) Creatine kinase isoenzymes: electrophoretic and quantitative measurements. Crit Rev Clin Lab Sci 15: 187–230

    Article  CAS  Google Scholar 

  • Fothergill-Gilmore L and Watson H (1989) The phosphoglycerate mutases. Adv Enzymol 62: 227–313

    CAS  PubMed  Google Scholar 

  • Gerbitz K, Summer J and Schumacher I (1986) Enolase isoenzymes as tumour markers. J Clin Chem Clin Biochem 24: 1009–1016

    CAS  PubMed  Google Scholar 

  • Griffiths J (1982) Creatine kinase isoenzyme 1. Clin Lab Med 2: 493–506

    Article  CAS  Google Scholar 

  • Haimoto J, Takahashi Y, Koshikawa T, Nagura H and Kato K (1985) Immunohistochemical localization of γ-enolase in normal human tissues other than nervous and neuroendocrine tissues. Lab Invest 52: 257–263

    CAS  PubMed  Google Scholar 

  • Hennipman A, Smits J, Van Oirschot B, Van Houwelingen J, Rijksen G, Neyt J, Van Unnik J and Staal G (1987) Glycolitic enzymes in breast cancer, benign breast disease and normal breast tissue. Tumor Biol 8: 251–263

    Article  CAS  Google Scholar 

  • Hennipman A, Van Oirschot B, Smits J, Rijksen G and Staal G (1988) Heterogeneity of glycolytic enzyme activity and isozyme composition of pyruvate kinase in breast cancer. Tumor Biol 9: 178–189

    Article  CAS  Google Scholar 

  • Ingelman-Sundberg H, Wikström B, Stormby N, Sundelin P and Hjerpe A (1989) Immunocytochemical reactivity of breast cancer tissue with antibodies to neuron-specific enolase and an adenocarcinoma-associated glycolipid antigen. Virchows Archiv A Pathol Anat 415: 539–544

    Article  CAS  Google Scholar 

  • Jares P, Rey M, Fernández P, Campo E, Nadal A, Muñoz M, Mallofré C, Muntané J, Nayach I, Estapé J and Cardesa A (1997) Cyclin D1 and retinoblastoma gene expression in human breast carcinoma: correlation with tumor proliferation and estrogen receptor status. J Pathol 182: 160–166

    Article  CAS  Google Scholar 

  • Joseph J, Cardesa A and Carreras J (1997) Creatine kinase activity and isoenzymes in lung, colon and liver carcinomas. Br J Cancer 76: 100–105

    Article  Google Scholar 

  • Joseph J, Cruz-Sánchez F and Carreras J (1996) Enolase activity and isoenzyme distribution in human brain regions and tumors. J Neurochem 66: 2484–2490

    Article  CAS  Google Scholar 

  • Kaiser E, Kuzmits R, Pregant P, Burghuber O and Worofka W (1989) Clinical biochemistry of neuron specific enolase. Clin Chim Acta 183: 13–32

    Article  CAS  Google Scholar 

  • Kanemitsu F and Okigaki T (1988) Creatine kinase: a review. J Cromatog 429: 399–417

    Article  CAS  Google Scholar 

  • Kato K, Ishiguro Y and Ariyoshi Y (1983) Enolase isozymes as disease markers: distribution of three enolase subunits (α, β and γ) in various human tissues. Disease Markers 1: 213–220

    CAS  Google Scholar 

  • Kaye A (1983) Enzyme induction by strogen. J Steroid Biochem 19: 33–40

    Article  CAS  Google Scholar 

  • Kaye A, Reiss N, Shaer A, Sluyser M, Iacobelli S, Amroch D and Soffer Y (1981) Estrogen responsive creatine kinase in normal and neoplastic cells. J Steroid Biochem 15: 69–75

    Article  CAS  Google Scholar 

  • Kaye A, Hallowes R, Cox S and Sluyser M (1986) Hormone-responsive creatine kinase in normal and neoplastic mammary glands. Ann NY Acad Sci 464: 218–230

    Article  CAS  Google Scholar 

  • Klein B and Jeunelot C (1978) Anion-exchange chromatography of erythrocytic and muscle adenylate kinase and its effect on the serum creatine kinase isoenzyme assays. Clin Chem 24: 2168–2170

    CAS  PubMed  Google Scholar 

  • Klinga K, Kaufman M, Runnebaum B and Kubli F (1982) Distribution of estrogen and progesterone receptors in primary tumor and lymphnodes in individual patients with breast cancer. Oncology 39: 337–339

    Article  CAS  Google Scholar 

  • Lakatua D and Mohammed R (1986) Estrogen and progesterone receptors and creatine kinase isoenzymes in human breast cancer. Clin Chem 32: 2103–2104

    CAS  PubMed  Google Scholar 

  • Lilleng R, Hagmar B and Nesland J (1992) C- erb B-2 protein and neuroendocrine expression in intraductal carcinomas of the breast. Mod Pathol 5: 41–47

    CAS  PubMed  Google Scholar 

  • Lindsey G and Diamond E (1978) Evidence for significant quantities of creatine kinase MM isoenzyme in human brain. Biochim Biophys Acta 524: 78–84

    Article  CAS  Google Scholar 

  • McCarty K Jr, Miller L, Cox E, Konrath J and McCarty K (1985) Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109: 716–722

    PubMed  Google Scholar 

  • Marangos P and Schmechel D (1987) Neuron specific enolase, a clinically useful marker for neurons and nonendocrine cells. Annu Rev Neurosci 10: 269–295

    Article  CAS  Google Scholar 

  • Matsushima S, Mori M, Adachi Y, Matsukuma A and Sugimachi K (1994) S100 protein positive human breast carcinomas: an immunohistochemical study. J Surg Oncol 55: 108–113

    Article  CAS  Google Scholar 

  • Messeri G, Tozzi P, Boddi V and Ciatto S (1983) Glucose-6-phosphate dehydrogenase activity and estrogen receptors in human breast cancer. J Steroid Biochem 19: 1647–1650

    Article  CAS  Google Scholar 

  • Meyer I, Thompson J, Kiser E and Haven G (1980) Observation of a variant creatine kinase isoenzyme in sera and breast tumor cytosols. Am J Clin Pathol 74: 332–336

    Article  CAS  Google Scholar 

  • Nanji A (1983) Serum creatine kinase isoenzymes: a review. Muscle Nerve 6: 83–90

    Article  CAS  Google Scholar 

  • Nesland J, Memoli V, Holm R, Gould V and Johannessen J (1985) Breast carcinomas with neuroendocrine differentiation. Ultrastruct Pathol 8: 225–240

    Article  CAS  Google Scholar 

  • Nesland J, Holm R and Johannessen J (1986 a) A study of different markers for neuroendocrine differentiation in breast carcinomas. Path Res Pract 181: 524–530

    Article  CAS  Google Scholar 

  • Nesland J, Holm R, Johannessen J and Gould V (1986 b) Neurone-specific enolase immunostaining in the diagnosis of breast carcinomas with neuroendocrine differentiation. Its usefulness and limitations. J Pathol 148: 35–43

    Article  CAS  Google Scholar 

  • Nesland J, Lundi S, Holm R and Johannessen J (1987) Electron microscopy and immunostaining of the normal breast and its benign lesions: a search for neuroendocrine cells. Histol Histopath 2: 73–77

    CAS  Google Scholar 

  • Nesland J, Holm R, Johannessen J and Gould V (1988) Neuroendocrine differentiation in breast lesions. Path Res Pract 183: 214–221

    Article  CAS  Google Scholar 

  • Nesland J, Ottestad L, Heikilla R, Holm R, Tveit K and Borresen A-L (1991 a) C- erb B-2 protein and neuroendocrine expression in breast carcinomas. Anticancer Res 11: 161–168

    CAS  PubMed  Google Scholar 

  • Nesland J, Ottestad L, Borresen A-L, Tvedt K, Holm R, Heikkilä R and Tveit K (1991 b) The c- erb B-2 protein in primary and metastatic breast carcinomas. Ultrastruct Pathol 15: 281–289

    Article  CAS  Google Scholar 

  • Omenn G and Cheung C-Y (1974) Phosphoglycerate mutase isozyme marker for tissue differentiation in man. Am J Hum Genet 26: 393–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omenn G and Hermodson M (1975) Human phosphoglycerate mutase: isozyme marker for muscle differentiation and for neoplasia. In Isozymes Vol. 3, (Markert Cl ed) pp. 1005–1019. Academic Press: New York

    Chapter  Google Scholar 

  • Osborne K (1985) Heterogeneity in hormone receptor status in primary and metastatic breast cancer. Semin Oncol 12: 317–326

    CAS  PubMed  Google Scholar 

  • Pahlman S, Esscher T and Nilsson K (1986) Expression of γ-subunit of enolase, neuron-specific enolase, in human non-neuroendocrine tumors and derived cell lines. Lab Invest 54: 554–560

    CAS  PubMed  Google Scholar 

  • Pertschuk L, Eisenberg K and Carter A (1985) Heterogeneity of estrogen binding sites in breast cancer: morphologic demonstration and relationship to endocrine response. Breast Cancer Res Treat 5: 137–147

    Article  CAS  Google Scholar 

  • Rapoport S (1968) The regulation of glycolysis in mammalian erythrocytes. Essays Biochem 4: 69–103

    CAS  PubMed  Google Scholar 

  • Reeve J, Stewart J, Watson D, Wulfrank D, Twentyman P and Bleehen N (1986) Neuron specific enolase expression in carcinoma of the lung. Br J Cancer 53: 519–528

    Article  CAS  Google Scholar 

  • Royds J, Taylor C and Timperley W (1985) Enolase isoenzymes as diagnostic markers. Neophatol Appl Neurobiol 11: 1–16

    Article  CAS  Google Scholar 

  • Scambia G, Natoli V, Panici P, Sica G and Mancuso S (1986 a). J Cancer Res Clin Oncol 112: 29–32

  • Scambia G, Panici P, Sica G, Natoli V, Caruso A and Mancuso S (1986 b) Creatine kinase activity and steroidal hormone receptors in primary breast cancer. Ann N Y Acad Sci 464: 511–513

    Article  Google Scholar 

  • Scambia G, Santeunasio G, Panici P, Iacobelli S and Mancuso S (1988) Immunochemical localization of creatine kinase BB in primary breast cancer: correlation with estrogen receptor content. J Cancer Res Clin Oncol 114: 101–104

    Article  CAS  Google Scholar 

  • Schmechel D (1985) γ-Subunit of the glycolitic enzyme enolase: nonspecific or neuron specific?. Lab Invest 52: 239–242

    CAS  PubMed  Google Scholar 

  • Schmechel D, Marangos P and Brightman M (1978) Neuron-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature 276: 834–836

    Article  CAS  Google Scholar 

  • Scopsi L, Andreola S, Pilotti S, Testori A, Baldini M, Leoni F, Lombardi L, Hutton J, Shimizu F and Rosa P (1992) Argyrophilia and granin (chromogranin/secretogranin) expression in female breast carcinomas. Their relationship to survival and other disease parameters. Am J Surg Pathol 16: 561–576

    Article  CAS  Google Scholar 

  • Taylor C, Royds J, Parsons M and Timperley W (1983) Diagnostic aspects of enolase isozymes. Curr Topics Biol Med Res 11: 95–119

    CAS  Google Scholar 

  • Tsung A (1983) Creatine kinase activity and isoenzyme pattern in various normal tissues and neoplasms. Clin Chem 29: 2040–2043

    CAS  PubMed  Google Scholar 

  • Urdal P, Urdal K and Stromme J (1983) Cytoplasmic creatine kinase isoenzymes quantitated in tissue specimens obtained at surgery. Clin Chem 29: 310–313

    CAS  PubMed  Google Scholar 

  • Vinores S, Bonnin J, Rubinstein L and Marangos P (1984) Immunohistochemical demonstration of neuron-specific enolase in neoplasms of the CNS and other tissues. Arch Pathol Lab Med 108: 536–539

    CAS  PubMed  Google Scholar 

  • Wallimann T, Wyss M, Bridiczka D, Nicolay K and Eppenberger M (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostais. Biochem J 281: 21–40

    Article  CAS  Google Scholar 

  • Wilander E, Phalman S, Sällström J and Lindgrem A (1987) Neuron-specific enolase expression and neuroendocrine differentiation in carcinomas of the breast. Arch Pathol Lab Med 111: 830–832

    CAS  PubMed  Google Scholar 

  • Winstend S and Hopps J (1985) Enzyme studies in breast tumor cytosols. Clin Chem 31: 986

    Google Scholar 

  • Wold F (1971) Enolase. In: The Enzymes Vol V, Boyer PD (ed), pp. 499–538. Academic Press: New York

    Google Scholar 

  • Wold L, Chin-Yang L and Homburger H (1981) Localization of the B and M polypeptide subunits of creatine kinase in normal and neoplastic human tissues by an immunoperoxidase technic. Am J Clin Pathol 75: 327–332

    Article  CAS  Google Scholar 

  • Wyss M, Smeitink J, Wevers R and Wallimann T (1992) Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102: 119–166

    Article  CAS  Google Scholar 

  • Zarghami N, Yu H, Diamandis E and Sutherland D (1995) Quantification of creatine kinase BB isoenzyme in tumor cytosols and serum with an ultrasensitive time-resolved immunofluorometric technique. Clin Biochem 28: 243–253

    Article  CAS  Google Scholar 

  • Zarghami N, Giai M, Yu H, Roagna R, Ponzone R, Katsaros D, Sismondi P and Diamandis E (1996) Ceratine kinase BB isoenzyme levels in tumour cytosols and survival of breast cancer patients. Br J Cancer 73: 386–390

    Article  CAS  Google Scholar 

  • Zeltzer P, Schneider S, Marangos P and Zweig M (1986) Differential expression of neural isozymes by human medulloblastomas and gliomas and neuroectodermal cell lines. J Natl Cancer Inst 77: 625–631

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Unit of Biochemistry, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143, Barcelona, 08036, Spain

    N Durany, J Joseph, O M Jimenez, F Climent & J Carreras

  2. Pathological Anatomy Department IDIBAPS, Hospital Cliníc i Provincial, Villarroel 170, Barcelona, 08036, Spain

    P L Fernández

  3. Hormonal Laboratory, IDIBAPS, Hospital Cliníc i Provincial, Villarroel 170, Barcelona, 08036, Spain

    F Rivera

Authors
  1. N Durany
    View author publications

    Search author on:PubMed Google Scholar

  2. J Joseph
    View author publications

    Search author on:PubMed Google Scholar

  3. O M Jimenez
    View author publications

    Search author on:PubMed Google Scholar

  4. F Climent
    View author publications

    Search author on:PubMed Google Scholar

  5. P L Fernández
    View author publications

    Search author on:PubMed Google Scholar

  6. F Rivera
    View author publications

    Search author on:PubMed Google Scholar

  7. J Carreras
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Durany, N., Joseph, J., Jimenez, O. et al. Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase, creatine kinase and enolase activity and isoenzymes in breast carcinoma. Br J Cancer 82, 20–27 (2000). https://doi.org/10.1054/bjoc.1999.0871

Download citation

  • Received: 29 January 1999

  • Revised: 26 May 1999

  • Accepted: 07 July 1999

  • Published: 10 December 1999

  • Issue date: 01 January 2000

  • DOI: https://doi.org/10.1054/bjoc.1999.0871

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • 2,3-bisphosphoglycerate phosphatase
  • creatine kinase
  • enolase
  • phosphoglycerate mutase activity and isoenzymes
  • breast carcinoma

This article is cited by

  • Energy stress-induced circDDX21 promotes glycolysis and facilitates hepatocellular carcinogenesis

    • Jingjing Luo
    • Yang Yang
    • Fang Wang

    Cell Death & Disease (2024)

  • Exosomal PGAM1 promotes prostate cancer angiogenesis and metastasis by interacting with ACTG1

    • Jun-qi Luo
    • Tao-wei Yang
    • Xiang-ming Mao

    Cell Death & Disease (2023)

  • Phosphoglycerate Mutase 1 Promotes Cell Proliferation and Neuroblast Differentiation in the Dentate Gyrus by Facilitating the Phosphorylation of cAMP Response Element-Binding Protein

    • Hyo Young Jung
    • Hyun Jung Kwon
    • In Koo Hwang

    Neurochemical Research (2019)

  • Dysregulation of the NUDT7-PGAM1 axis is responsible for chondrocyte death during osteoarthritis pathogenesis

    • Jinsoo Song
    • In-Jeoung Baek
    • Eun-Jung Jin

    Nature Communications (2018)

  • Phosphoglyceric acid mutase-1 contributes to oncogenic mTOR-mediated tumor growth and confers non-small cell lung cancer patients with poor prognosis

    • Qian Sun
    • Shuzhan Li
    • Hongbing Zhang

    Cell Death & Differentiation (2018)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited