Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Loss of heterozygosity at 7p in Wilms’ tumour development
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 17 December 1999

Loss of heterozygosity at 7p in Wilms’ tumour development

  • R M Powlesland1,
  • A K Charles2,
  • K T A Malik1,
  • P A Reynolds1,
  • S Pires3,
  • M Boavida3 &
  • …
  • K W Brown1 

British Journal of Cancer volume 82, pages 323–329 (2000)Cite this article

  • 1031 Accesses

  • 36 Citations

  • Metrics details

This article has been updated

Abstract

Chromosome 7p alterations have been implicated in the development of Wilms’ tumour (WT) by previous studies of tumour cytogenetics, and by our analysis of a constitutional translocation (t(1;7)(q42;p15)) in a child with WT and radial aplasia. We therefore used polymorphic microsatellite markers on 7p for a loss of heterozygosity (LOH) study, and found LOH in seven out of 77 informative WTs (9%). The common region of LOH was 7p15–7p22, which contains the region disrupted by the t(1;7) breakpoint. Four WTs with 7p LOH had other genetic changes; a germline WT1 mutation with 11p LOH, LOH at 11p, LOH at 16q, and loss of imprinting of IGF2. Analysis of three tumour-associated lesions from 7p LOH cases revealed a cystic nephroma-like area also having 7p LOH. However, a nephrogenic rest and a contralateral WT from the two other cases showed no 7p LOH. No particular clinical phenotype was associated with the WTs which showed 7p LOH. The frequency and pattern of 7p LOH demonstrated in our studies indicate the presence of a tumour suppressor gene at 7p involved in the development of Wilms’ tumour. © 2000 Cancer Research Campaign

Similar content being viewed by others

Deletion of 17p in cancers: Guilt by (p53) association

Article Open access 18 February 2025

Wilms tumour

Article 14 October 2021

Bioinformatical analysis of the key differentially expressed genes for screening potential biomarkers in Wilms tumor

Article Open access 16 September 2023

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Austruy E, Candon S, Henry I, Gyapay G, Tournade MF, Mannens M, Callen D, Junien C and Jeanpierre C (1995) Characterization of regions of chromosomes 12 and 16 involved in nephroblastoma tumorigenesis. Genes Chromosomes Cancer 14: 285–294

    Article  CAS  PubMed  Google Scholar 

  • Beckwith JB, Kiviat NB and Bonadio JF (1990) Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediatr Pathol 10: 1–36

    Article  CAS  PubMed  Google Scholar 

  • Brown KW, Villar AJ, Bickmore W, ClaytonSmith J, Catchpoole D, Maher ER and Reik W (1996) Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway. Hum Mol Genet 5: 2027–2032

    Article  CAS  PubMed  Google Scholar 

  • Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H and Lewis WH (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60: 509–520

    Article  CAS  PubMed  Google Scholar 

  • Charles AK, Brown KW and Berry PJ (1998 a) Microdissecting the genetic events in nephrogenic rests and Wilms’ tumor development. Am J Pathol 153: 991–1000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charles AK, Vujanic GM and Berry PJ (1998 b) Renal tumours of childhood. Histopathology 32: 293–309

    Article  CAS  PubMed  Google Scholar 

  • Chumakov IM, Rigault P, Legall I, Bellannechantelot C, Billault A, Guillou S, Soularue P, Guasconi G, Poullier E, Gros I, Belova M, Sambucy JL, Susini L, Gervy P, Glibert F, Beaufils S, Bui H, Massart C, Detand MF, Dukasz F, Lecoulant S, Ougen P, Perrot V, Saumler M, Soravito C, Bahouayila R, Cohenakenine A, Barillot E, Bertrand S, Codani JJ, Caterina D, Georges I, Lacroix B, Lucotte G, Sahbatou M, Schmit C, Sangouard M, Tubacher E, Dib C, Faure S, Fizames C, Gyapay G, Millasseau P, Nguyen S, Muselet D, Vignal A, Morissette J, Menninger J, Lieman J, Desai T, Banks A, Brayward P, Ward D, Hudson T, Gerety S, Foote S, Stein L, Page DC, Lander ES, Weissenbach J, Lepaslier D and Cohen D (1995) A YAC contig map of the human genome. Nature 377: 175–298

    CAS  PubMed  Google Scholar 

  • Coppes MJ, Campbell CE and Williams BRG (1995) Wilms Tumor: Clinical and Molecular Characterisation. RG Landes: Austin, Texas

    Book  Google Scholar 

  • Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E, Lathrop M, Gyapay G, Morissette J and Weissenbach J (1996) A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380: 152–154

    Article  CAS  PubMed  Google Scholar 

  • Fearon ER and Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JA and Renshaw AA (1996) Isochromosome 7q in adult Wilms’ tumor. Cancer Genet Cytogenet 86: 168–169

    Article  CAS  PubMed  Google Scholar 

  • Franke U, Holmes LB, Atkins L and Riccardi VM (1979) Aniridia Wilms’ tumor association: evidence for specific deletion of 11p13. Cytogenet Cell Genet 24: 185–192

    Article  Google Scholar 

  • Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH and Bruns GA (1990) Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 343: 774–778

    Article  CAS  PubMed  Google Scholar 

  • Grundy PE, Telzerow PE, Breslow N, Moksness J, Huff V and Paterson MC (1994) Loss of heterozygosity for chromosomes 16Q and 1P in Wilms’ tumors predicts an adverse outcome. Cancer Res 54: 2331–2333

    CAS  PubMed  Google Scholar 

  • Grundy RG, Pritchard J, Scambler P and Cowell JK (1998) Loss of heterozygosity for the short arm of chromosome 7 in sporadic Wilms’ tumour. Oncogene 17: 395–400

    Article  CAS  PubMed  Google Scholar 

  • Hastie ND (1994) The genetics of Wilms’ tumor – a case of disrupted development. Annu Rev Genet 28: 523–558

    Article  CAS  PubMed  Google Scholar 

  • Hearne CM, Ghosh S and Todd JA (1992) Microsatellites for linkage analysis of genetic traits. Trend Genet 8: 288–294

    Article  CAS  Google Scholar 

  • Hewitt M, Lunt PW and Oakhill A (1991) Wilms’ tumour and a de novo (1;7) translocation in a child with bilateral radial aplasia. J Med Genet 28: 411–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang A, Campbell CE, Bonetta L, McAndrews Hill MS, Chilton MacNeill S, Coppes MJ, Law DJ, Feinberg AP, Yeger H and Williams BR (1990) Tissue, developmental, and tumor-specific expression of divergent transcripts in Wilms’ tumor. Science 250: 991–994

    Article  CAS  PubMed  Google Scholar 

  • Huff V and Saunders GF (1993) Wilms’ tumor genes. Biochim Biophys Acta 1155: 295–306

    CAS  PubMed  Google Scholar 

  • Kaneko Y, Homma C, Maseki N, Sakurai M and Hata J (1991) Correlation of chromosome abnormalities with histological and clinical features in Wilms’ and other childhood renal tumors. Cancer Res 51: 5937–5942

    CAS  PubMed  Google Scholar 

  • Keen TJ, Inglehearn CF, Green ED, Cunningham AF, Patel RJ, Peacock RE, Gerken S, White R, Wessenbach J and Bhattacharya SS (1995) YAC contig spanning the dominant retinitis pigmentosa locus (RP9) on chromosome 7p. Genomics 28: 383–388

    Article  CAS  PubMed  Google Scholar 

  • Knudson AG and Strong LC (1972) Mutation and cancer: a model for Wilms’ tumour of the kidney. J Natl Cancer Inst 48: 313–324

    PubMed  Google Scholar 

  • Lahoti C, Thorner P, Malkin D and Yeger H (1996) Immunohistochemical detection of p53 in Wilms’ tumors correlates with unfavorable outcome. Am J Pathol 148: 1577–1589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lobbert RW, Klemm G, Gruttner HP, Harms D, Winterpacht A and Zabel BU (1998) Novel WT1 mutation, 11p LOH, and t(7;12) (p22;q22) chromosomal translocation identified in a Wilms’ tumor case. Genes Chromosomes Cancer 21: 347–350

    Article  CAS  PubMed  Google Scholar 

  • McDonald JM, Douglass EC, Fisher R, Geiser CF, Krill CE, Strong LC, Virshup D and Huff V (1998) Linkage of familial Wilms’ tumor predisposition to chromosome 19 and a two-locus model for the etiology of familial tumors. Cancer Res 58: 1387–1390

    CAS  PubMed  Google Scholar 

  • Maitland NJ, Cox MF, Lynas C, Prime SS, Meanwell CA and Scully C (1987) Detection of human papillomavirus DNA in biopsies of human oral tissue. Br J Cancer 56: 245–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malkin D, Sexsmith E, Yeger H, Williams BRG and Coppes MJ (1994) Mutations of the p53 tumor suppressor gene occur infrequently in Wilms’ tumor. Cancer Res 54: 2077–2079

    CAS  PubMed  Google Scholar 

  • Maw MA, Grundy PE, Millow LJ, Eccles MR, Dunn RS, Smith PJ, Feinberg AP, Law DJ, Paterson MC, Telzerow PE, Callen DF, Thompson AD, Richards RI and Reeve AE (1992) A 3rd Wilms’ tumor locus on chromosome-16q. Cancer Res 52: 3094–3098

    CAS  PubMed  Google Scholar 

  • Mellersh C and Sampson J (1993) Simplifying the detection of microsatellite length polymorphisms. Biotechniques 15: 582–584

    CAS  PubMed  Google Scholar 

  • Miozzo M, Perotti D, Minoletti F, Mondini P, Pilotti S, Luksch R, Fossatibellani F, Pierotti MA, Sozzi G and Radice P (1996) Mapping of a putative tumor suppressor locus to proximal 7p in Wilms’ tumors. Genomics 37: 310–315

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa K, Kent J, Moore A, Charlieu J, Little M, Williamson KA, Kelsey A, Brown KW, Hassam S, Briner J, Hayashi Y, Hirai H, Yazaki Y, van Heyningen V and Hastie ND (1998) Loss of WT1 function leads to ectopic myogenesis in Wilms’ tumor. Nat Genet 18: 15–17

    Article  CAS  PubMed  Google Scholar 

  • Ogawa O, Eccles MR, Szeto J, Mcnoe LA, Yun K, Maw MA, Smith PJ and Reeve AE (1993) Relaxation of insulin-like growth factor-II gene imprinting implicated in Wilms’ tumor. Nature 362: 749–751

    Article  CAS  PubMed  Google Scholar 

  • Park S, Bernard A, Bove KE, Sens DA, Hazen-Martin DJ, Garvin AJ and Haber DA (1993) Inactivation of WT1 in nephrogenic rests, genetic precursors to Wilms’ tumour. Nat Genet 5: 363–367

    Article  CAS  PubMed  Google Scholar 

  • Peier AM, Meloni AM, Erling MA and Sandberg AA (1995) Involvement of chromosome 7 in Wilms’ tumor. Cancer Genet Cytogenet 79: 92–94

    Article  CAS  PubMed  Google Scholar 

  • Ping AJ, Reeve AE, Law DJ, Young MR, Boehnke M and Feinberg AP (1989) Genetic linkage of Beckwith–Wiedemann syndrome to 11p15. Am J Hum Genet 44: 720–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radice P, Perotti D, Debenedetti V, Mondini P, Radice MT, Pilotti S, Luksch R, Bellani FF and Pierotti MA (1995) Allelotyping in Wilms’ tumors identifies a putative third tumor suppressor gene on chromosome 11. Genomics 27: 497–501

    Article  CAS  PubMed  Google Scholar 

  • Rahman N, Arbour L, Tonin P, Renshaw J, Pelletier J, Baruchel S, Pritchardjones K, Stratton MR and Narod SA (1996) Evidence for a familial Wilms’ tumour gene (FWT1) on chromosome 17q12–q21. Nat Genet 13: 461–463

    Article  CAS  PubMed  Google Scholar 

  • Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE and Feinberg AP (1993) Relaxation of imprinted genes in human cancer. Nature 362: 747–749

    Article  CAS  PubMed  Google Scholar 

  • Reeve AE, Sih SA, Raizis AM and Feinberg AP (1989) Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms’ tumor cells. Mol Cell Biol 9: 1799–1803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reik W and Maher ER (1997) Imprinting in clusters: lessons from Beckwith-Wiedemann syndrome. Trend Genet 13: 330–334

    Article  CAS  Google Scholar 

  • Reynolds PA, Powlesland RM, Keen TJ, Inglehearn CF, Cunningham AF, Green ED and Brown KW (1996) Localization of a novel t(1:7) translocation associated with Wilms’ tumor predisposition and skeletal abnormalities. Genes Chromosomes Cancer 17: 151–155

    Article  CAS  PubMed  Google Scholar 

  • Rivera H (1995) Constitutional and acquired rearrangements of chromosome 7 in Wilms’ tumor. Cancer Genet Cytogenet 81: 97–98

    Article  CAS  PubMed  Google Scholar 

  • Rivera H, Ruiz C, Garcia Cruz D, Rolon A, Arroyo J and Cantu JM (1985) Constitutional mosaic t(2;7)(q33;p22) and other rearrangements in a girl with Wilms’ tumor. Ann Genet 28: 52–54

    CAS  PubMed  Google Scholar 

  • Sawyer JR, Winkel EW, Redman JF and Roloson GJ (1993) Translocation (7;7)(p13;q21) in a Wilms’ tumor. Cancer Genet Cytogenet 69: 57–59

    Article  CAS  PubMed  Google Scholar 

  • Sheffield VC, Weber JL, Buetow KH, Murray JC, Even DA, Wiles K, Gastier JM, Pulido JC, Yandava C, Sunden SL, Mattes G, Businga T, Mcclain A, Beck J, Scherpier T, Gilliam J, Zhong J and Duyk GM (1995) A collection of tri- and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum Mol Genet 4: 1837–1844

    Article  CAS  PubMed  Google Scholar 

  • Solis V, Pritchard J and Cowell JK (1988) Cytogenetic changes in Wilms’ tumors. Cancer Genet Cytogenet 34: 223–234

    Article  CAS  PubMed  Google Scholar 

  • Steenman M, Redeker B, De Meulemeester M, Wiesmeijer K, Voute PA, Westerveld A, Slater R and Mannens M (1997) Comparative genomic hybridization analysis of Wilms’ tumors. Cytogenet Cell Genet 77: 296–303

    Article  CAS  PubMed  Google Scholar 

  • Wang-Wuu S, Soukup S, Bove B, Gotwals B and Lampkin B (1990) Chromosomal analysis of 31 Wilms’ tumors. Cancer Res 50: 2786–2793

    Google Scholar 

  • Weber JL, Kwitek AE and May PE (1990) Dinucleotide repeat polymorphisms at the D16S260, D16S261, D16S265, D16S266, and D16S267 loci. Nucleic Acids Res 18: 4034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilmore HP, White GFJ, Howell RT and Brown KW (1994) Germline and somatic abnormalities of chromosome 7 in Wilms’ tumor. Cancer Genet Cytogenet 77: 93–98

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Pathology and Microbiology, CLIC Research Unit, University of Bristol, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK

    R M Powlesland, K T A Malik, P A Reynolds & K W Brown

  2. Department of Paediatric Pathology, St Michael’s Hospital, Southwell Street, Bristol, BS2 8EG, UK

    A K Charles

  3. Centro de Genetica Humana, Instituto Nacional De Saude, Dr Ricardo Jorge, Av. Padre Cruz, Lisboa Codex, 1699, Portugal

    S Pires & M Boavida

Authors
  1. R M Powlesland
    View author publications

    Search author on:PubMed Google Scholar

  2. A K Charles
    View author publications

    Search author on:PubMed Google Scholar

  3. K T A Malik
    View author publications

    Search author on:PubMed Google Scholar

  4. P A Reynolds
    View author publications

    Search author on:PubMed Google Scholar

  5. S Pires
    View author publications

    Search author on:PubMed Google Scholar

  6. M Boavida
    View author publications

    Search author on:PubMed Google Scholar

  7. K W Brown
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Powlesland, R., Charles, A., Malik, K. et al. Loss of heterozygosity at 7p in Wilms’ tumour development. Br J Cancer 82, 323–329 (2000). https://doi.org/10.1054/bjoc.1999.0922

Download citation

  • Received: 16 April 1999

  • Revised: 22 July 1999

  • Accepted: 25 August 1999

  • Published: 17 December 1999

  • Issue date: 01 January 2000

  • DOI: https://doi.org/10.1054/bjoc.1999.0922

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • loss of heterozygosity
  • chromosome 7
  • Wilms' tumour
  • tumour suppressor gene

This article is cited by

  • Overexpression of HDAC9 promotes oral squamous cell carcinoma growth, regulates cell cycle progression, and inhibits apoptosis

    • Bhawna Rastogi
    • Satish K. Raut
    • Madhu Khullar

    Molecular and Cellular Biochemistry (2016)

  • High-resolution genomic profiling of an adult Wilms’ tumor: evidence for a pathogenesis distinct from corresponding pediatric tumors

    • Jenny Karlsson
    • Linda Holmquist Mengelbier
    • David Gisselsson Nord

    Virchows Archiv (2011)

  • Loss of heterozygosity and SOSTDC1 in adult and pediatric renal tumors

    • Kimberly R Blish
    • Kathryn A Clausen
    • Suzy V Torti

    Journal of Experimental & Clinical Cancer Research (2010)

  • Candidate genes and potential targets for therapeutics in Wilms’ tumour

    • Christopher Blackmore
    • Max J. Coppes
    • Aru Narendran

    Clinical and Translational Oncology (2010)

  • The parathyroid hormone-responsive B1 gene is interrupted by a t(1;7)(q42;p15) breakpoint associated with Wilms' tumour

    • Ellen G Vernon
    • Karim Malik
    • Keith W Brown

    Oncogene (2003)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited