Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Spontaneous apoptosis in ovarian carcinomas: a positive association with p53 gene mutation is dependent on growth fraction
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 07 January 2000

Spontaneous apoptosis in ovarian carcinomas: a positive association with p53 gene mutation is dependent on growth fraction

  • J Kupryjańczyk1,4,
  • A Dansonka-Mieszkowska1,
  • T Szymańska1,
  • G Karpińska4,
  • A Rembiszewska1,
  • M Rusin3,
  • R Konopiński1,
  • E Kraszewska2,
  • A Timorek5,
  • D W Yandell6 &
  • …
  • J Stelmachów5 

British Journal of Cancer volume 82, pages 579–583 (2000)Cite this article

  • 693 Accesses

  • 11 Citations

  • Metrics details

This article has been updated

Abstract

Changes in cell survival contribute to tumour development, influence tumour biology and its response to chemotherapy. p53 gene alterations should negatively affect apoptosis by impaired p53-dependent apoptotic response. We looked for associations between spontaneous apoptosis, p53 gene mutation, p53 protein accumulation, growth fraction, bcl-2 expression and histological parameters in 64 ovarian, four tubal and three peritoneal carcinomas. Apoptotic cells were detected with the TUNEL method. p53 gene variants were detected by the single-strand conformation polymorphism and were sequenced directly. P53, Ki-67 and bcl-2 protein expressions were detected immunohistochemically. A weighed multiple logistic regression model was applied. Apoptotic index (Al) ranged 0.02–0.18 (mean 0.11); proliferation index (PI) ranged 3–90% (mean 54%). p53 gene mutations were present in 51, p53 protein accumulation in 46, and diffuse bcl-2 expression in 29 of 71 tumours. The AI was positively associated with the presence of p53 gene mutation (P = 0.011). However, the PI included into the analysis did positively influence the AI (P = 0.02) and diminished the association with p53 gene mutation (P = 0.082). The AI was negatively associated with good histological differentiation (P = 0.0006), the serous tumour type (P = 0.002), and diffuse bcl-2 expression (P = 0.025). Strong bcl-2 expression was associated with endometrioid tumour type (P = 0.002). FIGO stage and p53 protein accumulation were the only parameters that influenced overall survival time. Thus, our results suggest that histological tumour type and grade are major determinants of spontaneous apoptosis in ovarian carcinomas; p53 alterations do not adversely but rather positively affect spontaneous apoptosis by increasing growth fraction. This, in turn, suggests p53-independency of spontaneous apoptosis in ovarian carcinomas. © 2000 Cancer Research Campaign

Similar content being viewed by others

Germline mutations in apoptosis pathway genes in ovarian cancer; the functional role of a TP53I3 (PIG3) variant in ROS production and DNA repair

Article Open access 29 March 2021

Identification of TP53 mutations in circulating tumour DNA in high grade serous ovarian carcinoma using next generation sequencing technologies

Article Open access 06 January 2023

Acquisition of taxane resistance by p53 inactivation in ovarian cancer cells

Article 14 January 2022

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Amundson SA, Myers TG and Fornace AJ (1998) Roles for p53 in growth arrest and apoptosis: putting on the breaks after genotoxic stress. Oncogene 17: 3287–3299

    Article  PubMed  Google Scholar 

  • Barber RH, Sommers SC, Snyder R and Kwon TH (1975) Histologic and nuclear grading and stromal reactions as indices for prognosis in ovarian cancer. Am J Obstet Gynecol 15: 795–804

    Google Scholar 

  • Bellamy COC (1996) p53 and apoptosis. Br Med Bull 53: 522–538

    Article  Google Scholar 

  • Creasman WJ (1989) Announcement, FIGO stages 1988, Revisions. Gynecol Oncol 35: 125–127

    Article  Google Scholar 

  • de Feudis P, Debernardis D, Beccaglia P, Valenti M, Graniela Sire E, Arzani D, Stanzione S, Parodi S, D'Incalci M, Russo P and Broggini M (1997) DDP-induced cytotoxicity is not influenced by p53 in nine human ovarian cancer cell lines with different p53 status. Br J Cancer 76: 474–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV, Prives C, Roussel MF, Sherr CJ and Lowe SW (1998) E1A signaling to p53 involves the p19 (ARF) tumor suppressor. Genes Dev 12: 2434–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diebold J, Baretton G, Felchner M, Meier W, Dopfer K, Schmidt M and Lohrs U (1996) bcl -2 expression, p53 accumulation, and apoptosis in ovarian carcinomas. Am J Clin Pathol 105: 341–349

    Article  CAS  PubMed  Google Scholar 

  • Evan G and Littlewood T (1998) Apoptosis. A matter of life and cell death. Science 281: 1317–1322

    Article  CAS  PubMed  Google Scholar 

  • Goodman LA and Kruskal WH (1979). Measures of Association for Cross Classifications. Springer-Verlag: New York

    Book  Google Scholar 

  • Henriksen R, Strang P, Wilander E, Backstrom T, Tribukait B and Oberg K (1994) P53 expression in epithelial ovarian neoplasms: relationship to clinical and pathological parameters, Ki-67 expression and flow cytometry. Gynecol Oncol 53: 301–306

    Article  CAS  PubMed  Google Scholar 

  • Herod JJO, Eliopoulos AG, Warwick J, Niedobitek G, Young LS and Kerr DJ (1996) The prognostic significance of bcl-2 and p53 expression in ovarian carcinoma. Cancer Res 56: 2178–2184

    CAS  PubMed  Google Scholar 

  • Hirai Y, Kaku S, Teshimi H, Shimuzu Y, Chen JT, Hamada T, Fujimoto I, Yamauchi K, Sakamoto A, Hasumi K and Masubuchi K (1989) Carcinoma of the fallopian tube. Experience with 15 cases. Gynecol Oncol 34: 20–26

    Article  CAS  PubMed  Google Scholar 

  • Klemi PJ, Pylkkanen L, Kiilholma P, Kurvinen K and Joensuu H (1995) p53 protein detected by immunohistochemistry as a prognostic factor in patients with epithelial ovarian carcinoma. Cancer 76: 1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Kupryjanczyk J (1996) [ p53 gene mutations and p53 protein accumulation in ovarian cancer – a review]. Nowotwory 46: 35–66

    Google Scholar 

  • Kupryjanczyk J, Thor AD, Beauchamp R, Merritt V, Edgerton S, Bell DA and Yandell DW (1993) P 53gene mutations and protein accumulation in human ovarian cancer. Proc Natl Acad Sci USA 90: 4961–4965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupryjanczyk J, Bell DA, Dimeo D, Beauchamp R, Thor AD and Yandell DW (1995 a) p53 gene analysis of ovarian borderline tumors and stage I carcinomas. Hum Pathol 26: 387–392

    Article  CAS  PubMed  Google Scholar 

  • Kupryjanczyk J, Edgerton S, Effird J, Yandell DW and Thor AD (1995 b) S phase fraction in gynecologic cancers. A comparison with p53 accumulation and p53 gene mutation. Path Res Pract 191: 705

    Google Scholar 

  • Liebermann DA, Hoffman B and Steinman RA (1995) Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene 11: 199–210

    CAS  PubMed  Google Scholar 

  • Lowe SW, Ruley HE, Jacks T and Housman D (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967

    Article  CAS  PubMed  Google Scholar 

  • McMenamin ME, O'Neil AJ and Gaffney EF (1997) Extent of apoptosis in ovarian serous carcinoma: relation to mitotic and proliferative indices, p53 expression, and survival. Mol Path 50: 242–246

    Article  CAS  Google Scholar 

  • Mehta CR and Patel NR (1983) A network algorithm for the exact treatment of Fisher's Exact Test in R × C Contingency Tables. J Am Stat Assn 78: 427–434

    Google Scholar 

  • Miyashita T and Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299

    Article  CAS  PubMed  Google Scholar 

  • Miyashita T, Harigai M, Hanada M and Reed JC (1994 a) Identification of a p53-dependent negative response in the bcl-2 gene. Cancer Res 54: 3131–3135

    CAS  PubMed  Google Scholar 

  • Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B and Reed JC (1994 b) Tumor suppressor p53 is a regulator of bcl -2 and bax gene expression in vitro and in vivo. Oncogene 9: 1799–1805

    PubMed  CAS  Google Scholar 

  • Peterson F, Kolstad P, Ludwig H and Ulfelder H (1988) Annual Report on the Results of Treatment in Gynecological Cancer. Vol. 20. International Federation of Gynecology and Obstetrics: Stockholm

  • Qin XQ, Livingston DM, Kaelin WG Jr and Adams PD (1994) Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 91: 10918–10922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed JC (1997) Double identity for proteins of the Bcl-2 family. Nature 387: 773–776

    Article  CAS  PubMed  Google Scholar 

  • Righetti SC, Della Torre G, Pilotti S, Menard S, Ottone F, Colnaghi MI, Pierotti MA, Lavarino C, Cornarotti M, Oriana S, Bohm S, Bresciani GL, Spatti G and Zunino F (1996) A comparative study of p53 gene mutations, protein accumulation, and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res 56: 689–693

    CAS  PubMed  Google Scholar 

  • Rohlke P, Milde-Langosch K, Weyland C, Pichlmeier U, Jonat W and Loning T (1997) p53 is a persistent and predictive marker in advanced ovarian carcinomas: multivariate analysis including comparison with Ki-67 immunoreactivity. J Cancer Res Clin Oncol 123: 496–501

    Article  CAS  PubMed  Google Scholar 

  • Russell P (1994) Surface epithelial-stromal tumors of the ovary. In: Blausteins Pathology of the Female Genital Tract, Kurman RJ (ed), pp. 705–782. Springer-Verlag: Berlin

    Chapter  Google Scholar 

  • Siegel S and Castellan NJ (1988). Non-parametric Statistics for the Behavioral Sciences, 2nd edn. McGraw UK: New York

    Google Scholar 

  • Tai YT, Lee S, Niloff E, Weisman C, Strobel T and Cannistra SA (1998) BAX protein expression and clinical outcome in epithelial ovarian cancer. J Clin Oncol 16: 2583–2590

    Article  CAS  PubMed  Google Scholar 

  • Wagner AJ, Kokontis JM and Hay N (1994) Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev 8: 2817–2830

    Article  CAS  PubMed  Google Scholar 

  • Williams DA (1982) Extra-binomial variation in logistic linear models. Applied Statistics 31: 144–148

    Article  Google Scholar 

  • Wu X and Levine AJ (1994) p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA 91: 3602–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki F, Tokunaga O and Sugimori H (1997) Apoptotic index in ovarian carcinoma: correlation with clinicopathologic factors and prognosis. Gynecol Oncol 66: 439–448

    Article  CAS  PubMed  Google Scholar 

  • Yonish-Rouach E, Grunwald D, Wilder S, Kimchi A, May E, Lawrence J-J, May P and Oren M (1993) p53-mediated cell death: relationship to cell cycle control. Mol Cell Biol 13: 1415–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ and Roussel MF (1998) Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12: 2424–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Molecular Biology, Roentgena 5, Warsaw, 02-781, Poland

    J Kupryjańczyk, A Dansonka-Mieszkowska, T Szymańska, A Rembiszewska & R Konopiński

  2. Department of Biostatistics, The Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, Warsaw, 02-781, Poland

    E Kraszewska

  3. Department of Tumour Biology, Wybrzeże Armii Krajowej 15, Gliwice, 4-100, Poland

    M Rusin

  4. Department of Pathology, Kondratowicza 8, Warsaw, 03-242, Poland

    J Kupryjańczyk & G Karpińska

  5. Department of Obstetrics and Gynecology, Medical Academy Warsaw, Bródnowski Hospital, Kondratowicza 8, Warsaw, 03-242, Poland

    A Timorek & J Stelmachów

  6. Pathology Department and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, 05405, VT, USA

    D W Yandell

Authors
  1. J Kupryjańczyk
    View author publications

    Search author on:PubMed Google Scholar

  2. A Dansonka-Mieszkowska
    View author publications

    Search author on:PubMed Google Scholar

  3. T Szymańska
    View author publications

    Search author on:PubMed Google Scholar

  4. G Karpińska
    View author publications

    Search author on:PubMed Google Scholar

  5. A Rembiszewska
    View author publications

    Search author on:PubMed Google Scholar

  6. M Rusin
    View author publications

    Search author on:PubMed Google Scholar

  7. R Konopiński
    View author publications

    Search author on:PubMed Google Scholar

  8. E Kraszewska
    View author publications

    Search author on:PubMed Google Scholar

  9. A Timorek
    View author publications

    Search author on:PubMed Google Scholar

  10. D W Yandell
    View author publications

    Search author on:PubMed Google Scholar

  11. J Stelmachów
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Kupryjańczyk, J., Dansonka-Mieszkowska, A., Szymańska, T. et al. Spontaneous apoptosis in ovarian carcinomas: a positive association with p53 gene mutation is dependent on growth fraction. Br J Cancer 82, 579–583 (2000). https://doi.org/10.1054/bjoc.1999.0967

Download citation

  • Received: 12 January 1999

  • Revised: 28 May 1999

  • Accepted: 09 September 1999

  • Published: 07 January 2000

  • Issue date: 01 February 2000

  • DOI: https://doi.org/10.1054/bjoc.1999.0967

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • apoptosis
  • p53 gene mutation
  • p53 protein accumulation
  • growth fraction
  • bcl-2
  • ovarian cancer
  • survival

This article is cited by

  • Spontaneous regression in recurrent epithelial ovarian cancer

    • Ritsuto Fujiwaki
    • Kohji Sawada

    Archives of Gynecology and Obstetrics (2007)

  • TP53 status determines clinical significance of ERBB2 expression in ovarian cancer

    • J Kupryjańczyk
    • R Mądry
    • J Markowska

    British Journal of Cancer (2004)

  • Evaluation of clinical significance of TP53, BCL-2, BAX and MEK1 expression in 229 ovarian carcinomas treated with platinum-based regimen

    • J Kupryjańczyk
    • T Szymańska
    • J Markowska

    British Journal of Cancer (2003)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited