Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Genetic analysis of multiple synchronous lesions of the colon adenoma–carcinoma sequence
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 07 March 2000

Genetic analysis of multiple synchronous lesions of the colon adenoma–carcinoma sequence

  • R Sedivy1,
  • B Wolf2,
  • M Kalipciyan3,
  • G G Steger3,
  • J Karner-Hanusch3 &
  • …
  • R M Mader3 

British Journal of Cancer volume 82, pages 1276–1282 (2000)Cite this article

  • 1004 Accesses

  • 32 Citations

  • Metrics details

This article has been updated

Abstract

The colorectal adenoma–carcinoma sequence represents a well-known paradigm for the sequential development of cancer driven by the accumulation of genomic defects. Although the colorectal adenoma–carcinoma sequence is well investigated, studies about tumours of different dignity co-existent in the same patient are seldom. In order to address the distribution of genetic alterations in different lesions of the same patient, we coincidently investigated carcinomas, adenomas and aberrant crypt foci in patients with sporadic colon cancer. By utilizing polymerase chain reaction, single-strand conformation polymorphism, heteroduplex-analysis, restriction fragment length polymorphism, protein truncation test and sequencing techniques we looked for mutations and microsatellite instability of APC, H- ras, K- ras, p53, DCC and the DNA repair genes hMLH1/hMSH2. In accordance with the suggested adenoma–carcinoma sequence of the colon, four patients reflected the progressive accumulation of genetic defects in synchronously appearing tumours during carcinogenesis. However, two patients with non-hereditary malignomas presented different genetic instabilities in different but synchronously appearing tumours suggesting non-clonal growth under almost identical conditions of the environment. Thus, sporadically manifesting multiple lesions of the colon were not necessarily driven by similar genetic mechanisms. Premalignant lesions may transform into malignant tumours starting from different types of genetic instability, which indicates independent and simultaneous tumorigenesis within the same organ. © 2000 Cancer Research Campaign

Similar content being viewed by others

Genome-wide association study identifies tumor anatomical site-specific risk variants for colorectal cancer survival

Article Open access 07 January 2022

Mutational analysis of driver genes defines the colorectal adenoma: in situ carcinoma transition

Article Open access 16 February 2022

Tumor associated chromosomal instability drives colorectal adenoma to adenocarcinoma progression based on 17 year follow up evidence

Article Open access 21 April 2025

Article PDF

Accession codes

Accessions

GenBank/EMBL/DDBJ

  • Z16551

  • Z16763

  • Z17191

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Boland CR, Sato J, Saito K, Carethers JM, Marra G, Laghi L and Chauhan DP (1998) Genetic instability and chromosomal aberrations in colorectal cancer: a review of the current models. Cancer Detect Prev 22: 377–382

    Article  CAS  PubMed  Google Scholar 

  • Breukel C, Tops C, van Leeuwen C, van der Klift H, Nakamura Y, Fodde R and Khan PM (1991a) CA repeat polymorphism at the D5S82 locus, proximal to adenomatous polyposis coli. Nucleic Acids Res 19: 5804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breukel C, Tops C, van Leeuwen C, van der Klift H, Nakamura Y, Fodde R and Khan PM (1991b) AT repeat polymorphism at the D5S122 locus tightly linked to adenomatous polyposis coli. Nucleic Acids Res 19: 6665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bufill JA (1990) Colorectal cancer: evidence for distinct genetic categories based on proximal or distal tumor location. Ann Intern Med 113: 779–788

    Article  CAS  PubMed  Google Scholar 

  • Cawkwell L, Lewis FA and Quirke P (1994) Frequency of allele loss of DCC, p53, RB1, WT1, NF1, NM23 and APC/MCC in colorectal cancer by fluorescent multiplex polymerase chain reaction. Br J Cancer 70: 813–818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coffey DS (1998) Self-organization, complexity and chaos: the new biology for medicine. Nat Med 4: 882–885

    Article  CAS  PubMed  Google Scholar 

  • Cross SS, Bury JP, Silcocks PB, Stephenson TJ and Cotton DW (1994) Fractal geometric analysis of colorectal polyps. J Pathol 172: 317–323

    Article  CAS  PubMed  Google Scholar 

  • Fearon ER and Vogelstein B (1990) A genetic model for colorectal tumourigenesis. Cell 61: 759–767

    Article  CAS  PubMed  Google Scholar 

  • Ferreira SC, Martins ML and Vilela MJ (1998) A growth model for primary cancer. Physica A 261: 569–580

    Article  Google Scholar 

  • Friedl W, Mandl M and Sengteller M (1993) Single-step screening method for the most common mutations in familial adenomatous polyposis. Hum Mol Gen 2: 1481–1482

    Article  CAS  PubMed  Google Scholar 

  • Gregorio CDI, Losi I, Fante R, Modica S, Ghidoni M, Pedroni M, Tamassia MG, Gafà L, Ponz de Leon M and Roncucci L (1997) Histology of aberrant crypt foci in the human colon. Histopathology 30: 328–334

    Article  PubMed  Google Scholar 

  • Iniesta P, deJuan C, Caldés T, Vega F-J, Massa M-J, Cerdán F-J, López J-A, Fernándex C, Sánchez A, Torres A-J, Balibrea J-L and Benito M (1998) Genetic abnormalities and microsatellite instability in colorectal cancer. Cancer Detect Prev 22: 383–395

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Kahn SM, Guillem JG, Lu S-H and Weinstein B (1989) Rapid detection of ras oncogenes in human tumours: application to colon, esophageal, and gastric cancer. Oncogene 4: 923–928

    CAS  PubMed  Google Scholar 

  • Jones MH and Nakamura Y (1992) Detection of loss of heterozygosity at the human TP53 locus using a dinucleotide repeat polymorphism. Genes Chromosomes Cancer 5: 89–90

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Kikuchi-Yanoshita R, Tanaka K, Muraoka M, Onda A, Okumura Y, Kishi N, lwama T, Mori T, Koike M, Ushio K, Chiba M, Nomizu S, Konishi F, Utsunomiya J and Miyaki M (1996) Gastroenterology 111: 307–317

    Article  CAS  PubMed  Google Scholar 

  • Luce MC, Marra G, Chauhan DP, Laghi L, Carethers JM, Cherian SP, Hawn M, Binnie CG, Kam-Morgan LN, Cayouette MC, Koi M and Boland R (1995) In vitro transcription/translation assay for the screening of hMLH1 and hMSH2 mutations in familial colon cancer. Gastroenterology 109: 1368–1374

    Article  CAS  PubMed  Google Scholar 

  • Maesawa C, Tamura G, Suzuki Y, Ogasawara S, Sakata K, Kashiwaba M and Satodate R (1995) The sequential accumulation of genetic alterations characteristic of the colorectal adenoma–carcinoma sequence does not occur between gastric adenoma and adenocarcinoma. J Pathol 176: 249–258

    Article  CAS  PubMed  Google Scholar 

  • Miyake S, Nagai K, Yoshino K, Oto M, Endo M and Yuasa Y (1994) Point mutations and allelic deletion of tumour suppressor gene DCC in human esophageal squamous cell carcinomas and their relation to metastasis. Cancer Res 54: 3001–3010

    Google Scholar 

  • Posadas EM, Criley SR and Coffey DS (1996) Chaotic oscillations in cultured cells: rat prostate cancer. Cancer Res 56: 3682–3688

    CAS  PubMed  Google Scholar 

  • Pretlow TP, Barrow BJ, Ashton WS, O'Riordan MA, Pretlow TG, Jurcisek JA and Stellato TA (1991) Aberrant crypts: putative preneoplastic foci in human colonic mucosa. Cancer Res 51: 1564–1567

    CAS  PubMed  Google Scholar 

  • Schwab ED and Pienta KJ (1996) Cancer as a complex adaptive system. Med Hypotheses 47: 235–241

    Article  CAS  PubMed  Google Scholar 

  • Sedivy R (1996a) The potential role of apoptosis (programmed cell death) in a chaotic determined carcinogenesis. Med Hypotheses 46: 455–457

    Article  CAS  PubMed  Google Scholar 

  • Sedivy R (1996b) Fractal tumours: their real and virtual images. Wien Klin Wochenschr 108: 547–51

  • Sedivy R and Mader RM (1997) Fractals, chaos, and cancer: do they coincide? Cancer Invest 15: 601–607

    Article  CAS  PubMed  Google Scholar 

  • Spirio L, Joslyn G, Nelson L, Leppert M and White R (1991) A CA repeat 30–70 kb downstream from the gene. Nucleic Acids Res 19: 6348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thibodeau SN, Bren G and Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260: 816–819

    Article  CAS  PubMed  Google Scholar 

  • Waliszewski P (1997) Complexity, dynamic cellular network, and tumorigenesis. Pol J Pathol 48: 235–241

    CAS  PubMed  Google Scholar 

  • Waliszewski P, Molski M and Konarski J (1998) On the holistic approach in cellular and cancer biology: nonlinearity, complexity, and quasi-determinism of the dynamic cellular network. J Surg Oncol 68: 70–78

    Article  CAS  PubMed  Google Scholar 

  • Weber JL and May PE (1990) Dinucleotide repeat polymorphism at the D18S34 locus. Nucleic Acids Res 18: 2201

    PubMed  PubMed Central  Google Scholar 

  • Weissenbach J (1992a) H. sapiens (D2S123) DNA segment containing (CA) repeat. GenBank accession# Z16551

  • Weissenbach J (1992b) H. sapiens (D2S134) DNA segment containing (CA) repeat. GenBank accession# Z16763

  • Weissenbach J (1992c) H. sapiens (D2S177) DNA segment containing (CA) repeat. GenBank accession# Z17191

Download references

Author information

Authors and Affiliations

  1. Division of Oncology, Institute of Clinical Pathology, Vienna University School of Medicine, Waehringer Guertel 18–20, Vienna, A-1090, Austria

    R Sedivy

  2. Department of Surgery, Division of Oncology, Vienna University School of Medicine, Waehringer Guertel 18–20, Vienna, A-1090, Austria

    B Wolf

  3. Department of Internal Medicine I, Division of Oncology, Vienna University School of Medicine, Waehringer Guertel 18–20, Vienna, A-1090, Austria

    M Kalipciyan, G G Steger, J Karner-Hanusch & R M Mader

Authors
  1. R Sedivy
    View author publications

    Search author on:PubMed Google Scholar

  2. B Wolf
    View author publications

    Search author on:PubMed Google Scholar

  3. M Kalipciyan
    View author publications

    Search author on:PubMed Google Scholar

  4. G G Steger
    View author publications

    Search author on:PubMed Google Scholar

  5. J Karner-Hanusch
    View author publications

    Search author on:PubMed Google Scholar

  6. R M Mader
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Sedivy, R., Wolf, B., Kalipciyan, M. et al. Genetic analysis of multiple synchronous lesions of the colon adenoma–carcinoma sequence. Br J Cancer 82, 1276–1282 (2000). https://doi.org/10.1054/bjoc.1999.1091

Download citation

  • Received: 10 February 1999

  • Revised: 13 September 1999

  • Accepted: 11 November 1999

  • Published: 07 March 2000

  • Issue date: 01 April 2000

  • DOI: https://doi.org/10.1054/bjoc.1999.1091

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • adenoma–carcinoma sequence
  • aberrant crypt foci
  • carcinogenesis
  • colon cancer
  • mutation
  • microsatellite instability

This article is cited by

  • Bacteria‐derived ferrichrome inhibits tumor progression in sporadic colorectal neoplasms and colitis‐associated cancer

    • Takuya Iwama
    • Mikihiro Fujiya
    • Toshikatsu Okumura

    Cancer Cell International (2021)

  • Molecular characterization of colorectal adenomas with and without malignancy reveals distinguishing genome, transcriptome and methylome alterations

    • Brooke R. Druliner
    • Panwen Wang
    • Lisa A. Boardman

    Scientific Reports (2018)

  • Genome-wide copy number changes and CD133 expression characterized distinct subset of colon polyps: differentiation between incidental polyps and cancer-associated polyps

    • Chih-Yung Yang
    • Ju-Yu Tseng
    • Jeng-Kai Jiang

    International Journal of Colorectal Disease (2015)

  • Four Percent of Patients Undergoing Colorectal Cancer Surgery may have Synchronous Appendiceal Neoplasia

    • Muhammad Najm Khan
    • Brendan J. Moran

    Diseases of the Colon & Rectum (2007)

  • Influence of age on adenomatous polyposis coli and p53 mutation frequency in sporadic colorectal cancer?rarity of co-occurrence of mutations in APC, K-ras, and p53 genes

    • Jy-Ming Chiang
    • Yah-Huei Wu Chou
    • Jim-Ray Chen

    Virchows Archiv (2004)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited