Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Inhibition of radiation-induced apoptosis by dexamethasone in cervical carcinoma cell lines depends upon increased HPV E6/E7
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 21 April 2000

Inhibition of radiation-induced apoptosis by dexamethasone in cervical carcinoma cell lines depends upon increased HPV E6/E7

  • M C Kamradt1,2,
  • N Mohideen2,
  • E Krueger2,
  • S Walter2 &
  • …
  • A T M Vaughan2 

British Journal of Cancer volume 82, pages 1709–1716 (2000)Cite this article

  • 964 Accesses

  • 29 Citations

  • Metrics details

This article has been updated

Abstract

Through a glucocorticoid-responsive promoter, glucocorticoids can regulate the transcription of the human papillomavirus (HPV) E6 and E7 viral genes which target the tumour suppressor proteins p53 and Rb respectively. In C4-1 cells, the glucocorticoid dexamethasone up-regulated HPV E6/E7 mRNA and decreased radiation-induced apoptosis. In contrast, dexamethasone had no effect on apoptosis of cells that either lack the HPV genome (C33-a) or in which HPV E6/E7 transcription is repressed by dexamethasone (SW756). Irradiated C4-1 cells showed increased p53 expression, while dexamethasone treatment prior to irradiation decreased p53 protein expression. In addition, p21 mRNA was regulated by irradiation and dexamethasone in accordance with the observed changes in p53. Overall, glucocorticoids decreased radiation-induced apoptosis in cervical carcinoma cells which exhibit increased HPV E6/E7 transcription and decreased p53 expression. Therefore, in HPV-infected cervical epithelial cells, p53-dependent apoptosis appears to depend upon the levels of HPV E6/E7 mRNA. © 2000 Cancer Research Campaign

Similar content being viewed by others

Structure of the p53 degradation complex from HPV16

Article Open access 28 February 2024

Integrated genomic and transcriptomic analysis reveals the activation of PI3K signaling pathway in HPV-independent cervical cancers

Article Open access 22 January 2024

EGFR-induced suppression of HPV E6/E7 is mediated by microRNA-9-5p silencing of BRD4 protein in HPV-positive head and neck squamous cell carcinoma

Article Open access 04 November 2022

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Almasan A, Linke SP, Paulson TG, Huang L and Wahl GM (1995) Genetic instability as a consequence of inappropriate entry into and progression through S phase. Cancer Metast Rev 14: 59–73

    Article  CAS  Google Scholar 

  • Band V, DeCaprio JA, Delmolino L, Kulesa V and Sager R (1991) Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J Virol 65: 6671–6676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bracey TS, Miller JC, Preece A and Paraskeva C (1995) Gamma-radiation-induced apoptosis in human colorectal adenoma and carcinoma cell lines can occur in the absence of wild type p53. Oncogene 10: 2391–2396

    CAS  PubMed  Google Scholar 

  • Butz K, Shahabeddin L, Geisen C, Spitovsky P, Ullmann A and Hoppe-Seyler F (1995) Functional p53 protein in human papillomavirus-positive cancer cells. Oncogene 10: 927–936

    CAS  PubMed  Google Scholar 

  • Butz K, Geisen C, Ullmann A, Spitovsky D and Hoppe-Seyler F (1996) Cellular responses of HPV-positive cancer cells to genotoxic anti-cancer agents, repression of E6/E7-oncogene expression and induction of apoptosis. Int J Cancer 68: 506–513

    Article  CAS  Google Scholar 

  • Butz K, Whitaker N, Denk C, Ullmann A, Geisen C and Hoppe-Seyler F (1999) Induction of the p53-target gene GADD45 in HPV-positive cancer cells. Oncogene 18: 2381–2386

    Article  CAS  Google Scholar 

  • Clark AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML and Wyllie AH (1993) Thymocyte dependent apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852

    Article  Google Scholar 

  • Crook T, Tidy JA and Vousden KH (1991) Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell 67: 547–556

    Article  CAS  Google Scholar 

  • Demers GW, Foster SA, Halbert CL and Galloway DA (1994) Elevated wild-type p53 protein levels in human epithelial cell lines immortalized by the human papillomavirus type 16 E7 gene. Proc Natl Acad Sci USA 91: 4382–4386

    Article  CAS  Google Scholar 

  • Dyson N, Howley PM, Munger K and Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934–936

    Article  CAS  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825

    Article  CAS  Google Scholar 

  • Gloss B, Bernard HU, Seedorf K and Klock G (1991) The upstream regulatory region of the human papillomavirus contains an E2 protein independent enhancer which is specific for cervical carcinoma and regulated by glucocorticoid hormones. EMBO 6: 3735–3743

    Article  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K and Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816

    Article  CAS  Google Scholar 

  • Hickman ES, Bates S and Vousden KH (1997) Perturbation of the p53 response by human papillomavirus type 16 E7. J Virol 71: 3710–3718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppe-Seyler F and Butz K (1994) Cellular control of human papillomavirus oncogene transcription. Mol Carcinogenesis 10: 134–141

    Article  CAS  Google Scholar 

  • Iglesias M, Yen K, Gaiotti D, Hildesheim A, Stoler MH and Woodworth CD (1998) Human papillomavirus type 16 E7 protein sensitizes cervical keratinocytes to apoptosis and release of interleukin-1alpha. Oncogene 17: 1195–1205

    Article  CAS  Google Scholar 

  • Kangas A, Nicholson DW and Hottla E (1998) Involvement of CPP32/Caspase-3 in c-Myc-induced apoptosis. Oncogene 16: 387–398

    Article  CAS  Google Scholar 

  • Kessis TD, Slebos RJ, Nelson WG, Kastan MB, Plunkett SM, Han AT, Lorincz L, Hedrick L and Cho KL (1993) Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc Natl Acad Sci USA 90: 3988–3992

    Article  CAS  Google Scholar 

  • Lazo PA (1999) The molecular genetics of cervical carcinoma. Br J Cancer 80: 2008–2018

    Article  CAS  Google Scholar 

  • Lechner MS and Laimins LA (1994) Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J Virol 68: 4262–4273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe SW and Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus E1A and accompanies apoptosis. Genes Dev 7: 535–545

    Article  CAS  Google Scholar 

  • Lowe SW, Schmitt EA, Smith SW, Osbourne BA and Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849

    Article  CAS  Google Scholar 

  • Mittal R, Tsutsumi K, Pater A and Pater MM (1993) Human papilloma virus type 16 expression in cervical keratinocytes: role of progesterone and glucocorticoid hormones. Obs Gyn 81: 5–12

    CAS  Google Scholar 

  • Morgenbesser SD, Williams BO, Jacks T and DePinho RA (1994). Nature 371: 72–74

  • Naumann U, Durka S and Weller M (1998) Dexamethasone-mediated protection from drug cytotoxicity, association with p21 WAF1/CIP1 protein accumulation?. Oncogene 7: 1567–1575

    Article  Google Scholar 

  • Pan H and Griep AE (1994) Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumour suppressor gene function in development. Genes Dev 7: 1285–1299

    Article  Google Scholar 

  • Pan H and Griep AE (1995) Temporally distinct patterns of p53-dependent and independent apoptosis during mouse lens development. Genes Dev 9: 2157–2169

    Article  CAS  Google Scholar 

  • Puthenveettil JA, Frederickson SM and Reznikoff CA (1996) Apoptosis in human papillomavirus 16 E7-, but not E6-immortalised human uro-epithelial cells. Oncogene 13: 1123–1131

    CAS  PubMed  Google Scholar 

  • Radford IR (1994) p53 status, DNA double-strand break repair proficiency, and radiation response of mouse lymphoid and myeloid cell lines. Int J Radiat Biol 66: 557–560

    Article  CAS  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ and Howley PM (1990) The E6 oncoprotein encoded by HPV types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136

    Article  CAS  Google Scholar 

  • Scheffner M, Munger K, Byrne JC and Howley PM (1991) The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci USA 88: 5523–5527

    Article  CAS  Google Scholar 

  • Shaw P, Bovey R, Tardy S, Sahli R, Sordat B and Costa J (1992) Induction of apoptosis by wildtype p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci USA 89: 4495–4499

    Article  CAS  Google Scholar 

  • Stern E, Forsythe AB, Youkeles L and Coffelt CF (1977) Steroid contraceptive use and cervical dysplasia: increased risk of progression. Science 196: 1460–1462

    Article  CAS  Google Scholar 

  • Stoppler H, Stoppler MC, Johnson E, Simbulan-Rosenthal CM, Smulson ME, Iyer S, Rosenthal DS and Schlegel R (1998) The E7 protein of human papillomavirus type 16 sensitizes primary human keratinocytes to apoptosis. Oncogene 17: 1207–1214

    Article  CAS  Google Scholar 

  • Strasser A, Harris AW, Jacks T and Cory S (1994) DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 79: 329–339

    Article  CAS  Google Scholar 

  • Thomas M, Nassimi P, Jenkins J and Banks L (1995) HPV-18 E6 mediated inhibition of p53 DNA binding activity is independent of E6 induced degradation. Oncogene 10: 261–268

    CAS  PubMed  Google Scholar 

  • Thomas M, Matlashewski G, Pim D and Banks L (1996) Induction of apoptosis by p53 is independent of its oligomeric state and can be abolished by HPV-18 E6 through ubiquitin mediated degradation. Oncogene 10: 109–115

    Google Scholar 

  • Von Knebel Doeberitz M, Tilman O, Schwarz E and Gissmann L (1988) Correlation of modified human papilloma virus early gene expression with altered growth properties in C4-1 cervical carcinoma cell lines. Cancer Res 48: 3780–3786

    CAS  PubMed  Google Scholar 

  • Von Knebel Doeberitz M, Koch S, Drzonek H and ZurHausen H (1990) Glucocorticoid hormones reduce the expression of major histocompatibility class I antigens on human epithelial cells. Eur J Immunol 20: 35–40

    Article  CAS  Google Scholar 

  • Von Knebel Doeberitz M, Bauknecht T, Bartsch D and ZurHausen H (1991) Influence of chromosomal integration on glucocorticoid-regulated transcription of growth-stimulating papillomavirus genes E6/E7 in cervical carcinoma cells. Proc Natl Acad Sci USA 88: 1411–1415

    Article  CAS  Google Scholar 

  • Von Knebel Doeberitz M, Ritmuller C, Zur Hausen H and Durst M (1992) Inhibition of tumorigenicity of cervical cells in nude mice by HPV E6/E7 anti-sense RNA. Int J Cancer 55: 831–834

    Article  Google Scholar 

  • Von Knebel Doeberitz M, Ritmuller C, Aengeneyndt F, Jansen-Durr P and Spitovsky D (1994) Reversible repression of papillomavirus oncogene expression in cervical carcinoma cells: consequences for the phenotype and E6-p53 and E7-pRb interactions. J Virol 68: 2811–2821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ and Munoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189: 12–19

    Article  CAS  Google Scholar 

  • Wang Y, Okan I, Pokrovskaja K and Wiman KG (1996) Abrogation of p53-induced G1 arrest by the HPV16 E7 protein does not inhibit p53-induced apoptosis. Oncogene 12: 2731–2735

    CAS  PubMed  Google Scholar 

  • Werness BA, Levine AJ and Howley PM (1990) Association of HPV types 16 and 18 E6 proteins with p53. Science 248: 76–79

    Article  CAS  Google Scholar 

  • White E (1996) Life, death, and the pursuit of apoptosis. Genes and Dev 10: 1–15

    Article  CAS  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A and Oren M (1991) Wildtype p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345–347

    Article  CAS  Google Scholar 

  • Yu Y and Little JB (1998) p53 is involved in but not required for ionizing radiation-induced caspase-3 activation and apoptosis in human lymphoblast cell lines. Cancer Res 58: 4277–4281

    CAS  PubMed  Google Scholar 

  • Zur Hausen H (1991) Human papillomaviruses in the pathogenesis of anogenital cancer. Virology 184: 9–13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departments of Cell Biology, Neurobiology and Anatomy, Loyola University Medical Center, Maywood, 60153, IL, USA

    M C Kamradt

  2. Radiotherapy, Loyola University Medical Center, Maywood, 60153, IL, USA

    M C Kamradt, N Mohideen, E Krueger, S Walter & A T M Vaughan

Authors
  1. M C Kamradt
    View author publications

    Search author on:PubMed Google Scholar

  2. N Mohideen
    View author publications

    Search author on:PubMed Google Scholar

  3. E Krueger
    View author publications

    Search author on:PubMed Google Scholar

  4. S Walter
    View author publications

    Search author on:PubMed Google Scholar

  5. A T M Vaughan
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Kamradt, M., Mohideen, N., Krueger, E. et al. Inhibition of radiation-induced apoptosis by dexamethasone in cervical carcinoma cell lines depends upon increased HPV E6/E7. Br J Cancer 82, 1709–1716 (2000). https://doi.org/10.1054/bjoc.2000.1114

Download citation

  • Received: 02 June 1999

  • Revised: 05 November 1999

  • Accepted: 23 January 2000

  • Published: 21 April 2000

  • Issue date: 01 May 2000

  • DOI: https://doi.org/10.1054/bjoc.2000.1114

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • HPV
  • dexamethasone
  • apoptosis
  • cervical carcinoma
  • p53

This article is cited by

  • Regulation of differential pro- and anti-apoptotic signaling by glucocorticoids

    • Ingrid Herr
    • Nikolaus Gassler
    • Markus W. Büchler

    Apoptosis (2007)

  • High-risk human papilloma virus (HPV) and survival in patients with esophageal carcinoma: a pilot study

    • Martin Dreilich
    • Michael Bergqvist
    • Ulf Gyllensten

    BMC Cancer (2006)

  • Antiviral agent Cidofovir restores p53 function and enhances the radiosensitivity in HPV-associated cancers

    • Bassam Abdulkarim
    • Siham Sabri
    • Jean Bourhis

    Oncogene (2002)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited