Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Biodistribution and pharmacokinetics of 111In-DTPA-labelled pegylated liposomes in a human tumour xenograft model: implications for novel targeting strategies
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 20 June 2000

Biodistribution and pharmacokinetics of 111In-DTPA-labelled pegylated liposomes in a human tumour xenograft model: implications for novel targeting strategies

  • K J Harrington1,2,
  • G Rowlinson-Busza1,
  • K N Syrigos1,
  • P S Uster3,
  • R M Abra3 &
  • …
  • J S W Stewart4 

British Journal of Cancer volume 83, pages 232–238 (2000)Cite this article

  • 1741 Accesses

  • 79 Citations

  • 3 Altmetric

  • Metrics details

This article has been updated

Abstract

The biodistribution and pharmacokinetics of 111In-DTPA-labelled pegylated liposomes in tumour-bearing nude mice was studied to examine possible applications of pegylated liposome-targeted anti-cancer therapies. Nude mice received an intravenous injection of 100 μl of 111In-DTPA-labelled pegylated liposomes, containing 0.37–0.74 MBq of activity. The t1/2α and t1/2β of 111In-DTPA-labelled pegylated liposomes were 1.1 and 10.3 h, respectively. Tumour uptake was maximal at 24 h at 5.5 ± 3.0% ID g–1. Significant reticuloendothelial system uptake was demonstrated with 19.3 ± 2.8 and 18.8 ± 4.2% ID g–1 at 24 h in the liver and spleen, respectively. Other sites of appreciable deposition were the kidney, skin, female reproductive tract and to a lesser extent the gastrointestinal tract. There was no indication of cumulative deposition of pegylated liposomes in the lung, central nervous system, musculoskeletal system, heart or adrenal glands. In contrast, the t1/2α and t1/2β of unencapsulated 111In-DTPA were 5 min and 1.1 h, respectively, with no evidence of accumulation in tumour or normal tissues. Incubation of 111In-DTPA-labelled pegylated liposomes in human serum for up to 10 days confirmed that they are very stable, with only minor leakage of their contents. The potential applications of pegylated liposomes in the arena of targeted therapy of solid cancers are discussed. © 2000 Cancer Research Campaign

Similar content being viewed by others

Comparison of two methods for tumour-targeting peptide modification of liposomes

Article 21 October 2022

PEGylated liposomal metformin overcomes pharmacokinetic barriers to trigger potent mitochondrial disruption and cell cycle arrest in hepatocellular carcinoma

Article Open access 07 August 2025

Effect of phospholipid head group on ultrasound-triggered drug release and cellular uptake of immunoliposomes

Article Open access 03 October 2023

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Allen TM and Chonn A (1987) Large unilamellar liposomes with low uptake by the reticuloendothelial system. FEBS Lett 223: 42–46

    Article  CAS  PubMed  Google Scholar 

  • Bangham AD, Standish HM and Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13: 238–252

    Article  CAS  PubMed  Google Scholar 

  • Berry G, Billingham M, Alderman E, Torti F, Lum B, Dumond C and Martin F (1996) Reduced cardiotoxicity of DOXIL (pegylated liposomal doxorubicin) in AIDS Kaposi’s sarcoma patients compared to a matched control group of cancer patients given doxorubicin. Proceedings of the American Society of Clinical Oncologists 15: 303(abstract 843)

    Google Scholar 

  • Britten RA, Evans AJ and Allalunis-Turner MJ (1996) Effect of cisplatin on the clinically-relevant radiosensitivity of human cervical carcinoma cell lines. Int J Radiat Oncol Biol Phys 34: 367–374

    Article  CAS  PubMed  Google Scholar 

  • Eagle H. Propagation in a fluid medium of a human epidermoid carcinoma Strain KB (1955). Proc Soc Exp Biol Med 89: 362–364

  • Gabizon AA (1994) Liposomal anthracyclines. Hematol Oncol Clin N America 8: 431–450

    CAS  Google Scholar 

  • Gabizon A and Papahadjopoulos D (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake in tumours. Proc Natl Acad Sci USA 85: 6949–6953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A and Barenholz Y (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polethylene-glycol coated liposomes. Cancer Res 54: 987–992

    CAS  PubMed  Google Scholar 

  • Goebel F-D, Goldstein D, Goos M, Jablonowski H and Stewart JS (1996) Efficacy and safety of Stealth liposomal doxorubicin in AIDS-related Kaposi’s sarcoma. Br J Cancer 73: 989–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon KB, Tajuddin A, Guitart J, Kuzel TM, Eramo LR and Von Roenn J (1995) Hand-foot syndrome associated with liposome-encapsulated doxorubicin therapy. Cancer 75: 2169–2173

    Article  CAS  PubMed  Google Scholar 

  • Gregoriades G, Swain CP, Wills EJ and Tavill AS (1974) Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 1: 1313–1316

    Article  Google Scholar 

  • Harrison M, Tomlinson D and Stewart S (1995) Liposomal entrapped doxorubicin: an active agent in AIDS-related Kaposi’s sarcoma. J Clin Oncol 13: 914–920

    Article  CAS  PubMed  Google Scholar 

  • Huang SK, Lee K-D, Hong K, Friend DS and Papahadjopoulos D (1992) Microscopic localisation of sterically stabilised liposomes in colon carcinoma-bearing mice. Cancer Res 52: 5135–5143

    CAS  PubMed  Google Scholar 

  • Huang SK, Martin FJ, Jay G, Vogel J, Papahadjopoulos D and Friend DS (1993) Extravasation and transcytosis of liposomes in Kaposi’s sarcoma-like dermal lesions of transgenic mice bearing the HIV tat gene. Am J Pathol 143: 1–14

    Google Scholar 

  • Lasic DD and Papahadjopoulos D (1995) Liposomes revisited. Science 267: 1275–1276

    Article  CAS  PubMed  Google Scholar 

  • Madhavan S and Northfelt DW (1995) Lack of vesicant injury following extravasation of liposomal doxorubicin. J Natl Cancer Inst 87: 1556–1557

    Article  CAS  PubMed  Google Scholar 

  • Maraveyas A, Stafford N, Rowlinson-Busza G, Stewart JSW and Epenetos AA (1995) Pharmacokinetics, biodistribution and dosimetry of specific and control radiolabelled monoclonal antibodies in patients with primary head and neck squamous cell carcinoma. Cancer Res 55: 1060–1069

    CAS  PubMed  Google Scholar 

  • Martin FJ (1997) Future prospects for Stealth liposomes in cancer therapy. Oncology 11: 63–68

    Google Scholar 

  • Mayhew EG, Lasic D, Babbar S and Martin FJ (1992) Pharmacokinetics and antitumour activity of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycol-derivatized phospholipid. Int J Cancer 51: 302–309

    Article  CAS  PubMed  Google Scholar 

  • McGinn CJ and Kinsella TJ (1992) The experimental and clinical rationale for the use of S-Phase-specific radiosensitisers to overcome tumour cell repopulation. Semin Oncol 4: 21–28

    Google Scholar 

  • Muggia FM, Hainsworth JD, Jeffers S, Miller P, Groshen S, Tan M, Roman L, Uziely B, Muderspach L, Garcia A, Burnett A, Greco FA, Morrow CP, Paradiso L and Liang L-J (1997) Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumour activity and toxicity modification by liposomal encapsulation. J Clin Oncol 15: 987–993

    Article  CAS  PubMed  Google Scholar 

  • Newman MS, Colbern GT, Working PK, Engbers C and Amantea MA (2000) Comparative pharmacokinetics, tissue distribution and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumour-bearing mice. Cancer Chemother Pharmacol 43: 1–7

    Article  Google Scholar 

  • Ng TT and Denning DW (1995) Liposomal amphotericin B (AmBisome) therapy in invasive fungal infections. Evaluation of United Kingdom Compassionate use data. Arch Intern Med 155: 1093–1098

    Article  CAS  PubMed  Google Scholar 

  • Northfelt DW, Dezube B, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A, Kaplan LD, DuMond C, Mamelok RD and Henry DH (1998) Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomised phase III clinical trial. J Clin Oncol 16: 2445–2451

    Article  CAS  PubMed  Google Scholar 

  • Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee K-D, Woodle MC, Lasic DD, Redemann C and Martin FJ (1991) Sterically stabilised liposomes: Improvements in pharmacokinetics and anti-tumour therapeutic efficacy. Proc Natl Acad Sci USA 88: 11460–11464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranson MR, Carmichael J, O’Byrne K, Stewart S, Smith D and Howell A (1997) Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicentre phase II trial. J Clin Oncol 15: 3185–3191

    Article  CAS  PubMed  Google Scholar 

  • Russo R, Nigro LC and Minniti S (1996) Visceral leishmaniasis in HIV infected patients: treatment with high dose liposomal amphotericin B (AmBisome). J Infect 32: 133–137

    Article  CAS  PubMed  Google Scholar 

  • Saunders M and Dische S (1996) Clinical results of hypoxic cell radiosensitisation from hyperbaric oxygen to accelerated radiotherapy, carbogen and nicotinamide. Br J Cancer 74: S271–S278

    CAS  Google Scholar 

  • Siegal T, Horowitz A and Gabizon A (1995) Doxorubicin encapsulated in sterically stabilised liposomes for the treatment of a brain tumour model: biodistribution and therapeutic efficacy. J Neurosurg 83: 1029–1037

    Article  CAS  PubMed  Google Scholar 

  • Stewart JSW, Jablonowski H, Goebel F-D, Arasteh K, Spittle M, Rios A, Aboulafia D, Galleshaw J and Dezube BJ (1998) Randomised comparative trial of pegylated liposomal doxorubicin versus bleomycin and vincristine in the treatment of AIDS-related Kaposi’s sarcoma. International Pegylated Liposomal Doxorubicin Study Group. J Clin Oncol 16: 683–691

    Article  CAS  PubMed  Google Scholar 

  • Vaage J, Barbera-Guillem E, Abra R, Huang A and Working P (1994) Tissue distribution and therapeutic effect of intravenous free or encapsulated liposomal doxorubicin on human prostate carcinoma xenografts. Cancer 73: 1478–1484

    Article  CAS  PubMed  Google Scholar 

  • Vaage J, Donovan D, Loftus T and Working P (1995) Prevention of metastasis from mouse mammary carcinomas with liposomes carrying doxorubicin. Br J Cancer 72: 1074–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaage J, Donovan D, Mayhew E, Uster P and Woodle M (1993a) Therapy of mouse mammary carcinomas with vincristine and doxorubicin encapsulated in sterically stabilised liposomes. Int J Cancer 54: 959–964

    Article  CAS  PubMed  Google Scholar 

  • Vaage J, Mayhew E, Lasic D and Martin F (1992) Therapy of primary and metastatic mouse mammary carcinomas with doxorubicin encapsulated in long circulating liposomes. Int J Cancer 51: 942–948

    Article  CAS  PubMed  Google Scholar 

  • Vaage J, Donovan D, Mayhew E, Abra R and Huang A 1993b) Therapy of human ovarian carcinoma xenografts using doxorubicin encapsulated in sterically stabilised liposomes. Cancer 72: 3671–3675

    Article  CAS  PubMed  Google Scholar 

  • Vaage J, Donovan D, Wipff E, Abra R, Colbern G, Uster P and Working P (2000) Therapy of a xenografted human colonic carcinoma using cisplatin or doxorubicin encapsulated in long-circulating pegylated stealth liposomes. Int J Cancer 80: 134–137

    Article  Google Scholar 

  • Williams SS, Alosco TR, Mayhew E, Lasic DD, Martin FJ and Bankert RB (1993) Arrest of human lung tumour xenograft growth in severe combined immunodeficient mice using doxorubicin encapsulated in sterically stabilised liposomes. Cancer Res 53: 3964–3967

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. ICRF Oncology Unit, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, 150 DuCane Road, London, W12 0HS, UK

    K J Harrington, G Rowlinson-Busza & K N Syrigos

  2. Molecular Medicine Program, Guggenheim 1836, Mayo Clinic, 200 1st Street SW, Rochester, 55902, Minnesota, USA

    K J Harrington

  3. SEQUUS Pharmaceuticals Inc., Menlo Park, CA, USA

    P S Uster & R M Abra

  4. Department of Radiotherapy, Charing Cross Hospital, Fulham Palace Road, London, W6, UK

    J S W Stewart

Authors
  1. K J Harrington
    View author publications

    Search author on:PubMed Google Scholar

  2. G Rowlinson-Busza
    View author publications

    Search author on:PubMed Google Scholar

  3. K N Syrigos
    View author publications

    Search author on:PubMed Google Scholar

  4. P S Uster
    View author publications

    Search author on:PubMed Google Scholar

  5. R M Abra
    View author publications

    Search author on:PubMed Google Scholar

  6. J S W Stewart
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Harrington, K., Rowlinson-Busza, G., Syrigos, K. et al. Biodistribution and pharmacokinetics of 111In-DTPA-labelled pegylated liposomes in a human tumour xenograft model: implications for novel targeting strategies. Br J Cancer 83, 232–238 (2000). https://doi.org/10.1054/bjoc.1999.1232

Download citation

  • Received: 09 December 1997

  • Revised: 21 October 1999

  • Accepted: 03 December 1999

  • Published: 20 June 2000

  • Issue date: 01 July 2000

  • DOI: https://doi.org/10.1054/bjoc.1999.1232

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • biodistribution
  • head and neck cancer
  • pegylated liposomes
  • pharmacokinetics
  • tumour targeting
  • xenograft tumour

This article is cited by

  • Current hurdles to the translation of nanomedicines from bench to the clinic

    • Snežana Đorđević
    • María Medel Gonzalez
    • María J. Vicent

    Drug Delivery and Translational Research (2022)

  • Targeted radiosensitisation by pegylated liposome-encapsulated 3′, 5′-O-dipalmitoyl 5-iodo-2′-deoxyuridine in a head and neck cancer xenograft model

    • K J Harrington
    • K N Syrigos
    • J S W Stewart

    British Journal of Cancer (2004)

  • Defining the success of cardiac gene therapy: how can nuclear imaging contribute?

    • Norbert Avril
    • Frank M. Bengel

    European Journal of Nuclear Medicine and Molecular Imaging (2003)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited