Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Decreased expression of p57KIP2 mRNA in human bladder cancer
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 08 August 2000

Decreased expression of p57KIP2 mRNA in human bladder cancer

  • M Oya1 &
  • W A Schulz1 

British Journal of Cancer volume 83, pages 626–631 (2000)Cite this article

  • 803 Accesses

  • 48 Citations

  • Metrics details

This article has been updated

Abstract

To identify targets of genetic and epigenetic alterations on chromosome 11p15.5 in human bladder cancer, expression of the imprinted KIP2, IGF2 and H19 genes was studied by quantitative RT-PCR in 24 paired samples of urothelial carcinomas and morphologically normal mucosa obtained by cystectomy, and in bladder carcinoma cell lines. The most frequent alteration in tumour tissue was decreased expression of KIP2 identified in 9/24 (37%) specimens. Decreased IGF2 and H19 mRNA levels were found in five (21%) and three (13%) tumours, respectively. One tumour each overexpressed IGF2 and H19. Loss of H19 expression was only found associated with loss of KIP2 expression, whereas decreased expression of IGF2 mRNA occurred independently. Almost all bladder carcinoma cell lines showed significant changes in the expression of at least one gene with diminished expression of KIP2 mRNA as the most frequent alteration. IGF2 mRNA levels were diminished in several lines, but increased in others. The KIP2 gene could be an important target of genetic and epigenetic alterations in bladder cancer affecting the maternal chromosome 11p15.5. However, reminiscent of the situation in Wilms’ tumours, expression of the IGF2 gene on the paternal chromosome can also be disturbed in bladder cancers. © 2000 Cancer Research Campaign

Similar content being viewed by others

Identification and preliminary analysis of hub genes associated with bladder cancer progression by comprehensive bioinformatics analysis

Article Open access 02 February 2024

Identification of an immune gene-associated prognostic signature in patients with bladder cancer

Article 15 February 2022

Histone H3K36me2 demethylase KDM2A promotes bladder cancer progression through epigenetically silencing RARRES3

Article Open access 13 June 2022

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • An HX, Niederacher D, Picard F, van Roeyen C, Bender HG & Beckmann MW (1996) Frequent allele loss on 9p21–22 defines a smallest common region in the vicinity of the CDKN2 gene in sporadic breast cancer. Genes, Chromosomes Cancer 17: 14–20

    Article  CAS  PubMed  Google Scholar 

  • Clasen S, Schulz WA, Gerharz CD, Grimm MO, Christoph F & Schmitz-Dräger BJ (1998) Frequent and heterogeneous expression of cyclin-dependent kinase inhibitor WAF1/p21 protein and mRNA in urothelial carcinoma. Br J Cancer 77: 515–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper MJ, Fischer M, Komitowski D, Shevelev A, Schulze E, Ariel I, Tykocinski ML, Miron S, Ilan J, de Groot N & Hochberg A (1996) Developmentally imprinted genes as markers for bladder tumor progression. J Urol 155: 120–127

    Google Scholar 

  • Dao D, Walsh CP, Yuan L, Gorelov D, Feng L, Hensle T, Nisen P, Yamashiro DJ, Bestor TH & Tycko B (1999) Multipoint analysis of human chromosome 11p15/mouse distal chromosome 7: inclusion of H19/IGF2 in the minimal WT2 region, gene specificity of H19 silencing in Wilms’ tumorigenesis and methylation hyper-dependence of H19 imprinting. Hum Mol Genet 8: 1337–1352

    Article  CAS  PubMed  Google Scholar 

  • Elkin M, Shevelev A, Schulze E, Tykocinsky M, Cooper M, Ariel I, Pode D, Kopf E, de Groot N & Hochberg A (1995) The expression of the imprinted H19 and IGF-2 genes in human bladder carcinoma. FEBS Lett 374: 57–61

    Article  CAS  PubMed  Google Scholar 

  • Gibas Z & Gibas L (1997) Cytogenetics of bladder cancer. Cancer Genet. Cytogenet 95: 108–115

    Article  CAS  PubMed  Google Scholar 

  • Grimm MO, Jürgens B, Schulz WA, Decken K, Makri D & Schmitz-Dräger BJ (1995) Inactivation of tumor suppressor genes and deregulation of the c-myc gene in urothelial cancer cell lines. Urol Res 23: 293–300

    Article  CAS  PubMed  Google Scholar 

  • Habuchi T, Ogawa O, Kaekehi Y, Ogura K, Koshiba M, Hamazaki S, Takahashi R, Sugiyama S & Yoshida O (1993) Accumulated allelic losses in the development of invasive urothelial cancer. Int J Cancer 53: 579–584

    Article  CAS  PubMed  Google Scholar 

  • Hatada I, Inazawa J, Abe T, Nakayama M, Kaneko Y, Jinno Y, Niikawa N, Ohashi H, Fukushima Y, Iida K, Yutani C, Takahashi S, Chiba Y, Ohishi S & Mukai T (1996) Genomic imprinting of human p57KIP2and its reduced expression Wilms’ tumors. Human Mol Genet 5: 783–788

    Article  CAS  Google Scholar 

  • Jürgens B, Schmitz-Dräger BJ & Schulz WA (1996) Hypomethylation of L1 LINE sequences prevailing in human urothelial carcinoma. Cancer Res 56: 5698–5703

    PubMed  Google Scholar 

  • Karnik P, Chen P, Paris M, Yeger H & Williams BRG (1998) Loss of heterozygosity at chromosome 11p15 in Wilms tumors: identification of two independent regions. Oncogene 17: 237–240

    Article  CAS  PubMed  Google Scholar 

  • Kondo M, Matsuoka S, Uchida K, Osada H, Nagatake M, Takagi K, Harper JW, Takahashi T, Elledge SJ & Takahashi T (1996) Selective maternal-allele loss in human lung cancers of the maternally expressed p57KIP2gene at 11p15.5. Oncogene 12: 1365–1368

    CAS  PubMed  Google Scholar 

  • Lee M-H, Reynisdóttir I & Massagué J (1995) Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 9: 639–649

    Article  CAS  PubMed  Google Scholar 

  • Lee MP, DeBaun M, Randhawa G, Reichard BA, Elledge SJ & Feinberg AP (1997) Low frequency of p57KIP2mutations in Beckwith-Wiedemann syndrome. Am J Hum Genet 61: 304–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MP, DeBaun M, Mitsuya K, Galonek HL, Brandenburg S, Oshimura M & Feinberg AP (1999) Loss of imprinting of a paternally expressed transcript, with antisense orientation to KvQLTI, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc Natl Acad Sci USA 96: 5203–5208

    Article  CAS  PubMed  Google Scholar 

  • Leighton PA, Ingram RS, Eggenschwiler J, Efstratiadis A & Tilghman SM (1995) Disruption of imprinting caused by deletion of the H19 gene in mice. Nature 375: 34–39

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Kahri AI, Heikkila P & Voutilainen R (1997) Ribonucleic acid expression of the clustered imprinted genes, p57KIP2, insulin-like growth factor II, and H19, in adrenal tumors and cultured adrenal cells. J Clin Endocrinol Metab 82: 1766–1771

    CAS  PubMed  Google Scholar 

  • Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW & Elledge SJ (1995) P57KIP2, a structurally distinct member of the p21CIPICDK inhibitor family, is a candidate tumor suppressor gene. Genes Dev 9: 650–662

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka S, Thompson JS, Edwards MC, Barletta JM, Grundy P, Kalikin LM, Harper JW, Elledge SJ & Feinberg AP (1996) Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, on chromosome 11p15. Proc Natl Acad Sci USA 93: 3026–3030

    Article  CAS  PubMed  Google Scholar 

  • McCann AH, Miller N, O’Meara A, Pedersen I, Keogh K, Gorey T & Dervan PA (1996) Biallelic expression of the IGF2 gene in human breast disease. Hum Mol Genet 5: 1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Mori M, Inoue H, Shiraishi T, Mimori K, Shibuta K, Nakashima H, Mafune K, Tanaka Y, Ueo H, Barnard GF, Sugimachi K & Akiyoshi T (1996) Relaxation of insulin-like growth factor 2 gene imprinting in esophageal cancer. Int J Cancer 68: 441–446

    Article  CAS  PubMed  Google Scholar 

  • Moulton T, Crenshaw T, Hao Y, Moosikasuwan J, Lin N, Dembitzer F, Hensle T, Weiss L, McMorrow L, Loew T, Kraus W, Gerad W & Tycko B (1994) Epigenetic lesions at the H19 locus in Wilms’ tumour patients. Nat Genet 7: 440–447

    Article  CAS  PubMed  Google Scholar 

  • Nonomura N, Nishimura K, Miki T, Kanno N, Kojima Y, Yokoyama M & Okuyama A (1997) Loss of imprinting of the insulin-like growth factor II gene in renal cell carcinoma. Cancer Res 57: 2575–2577

    CAS  PubMed  Google Scholar 

  • Oda H, Kume H, Shimizu Y, Inoue T & Ishikawa T (1998) Loss of imprinting of IGF2 in renal cell carcinomas. Int J Cancer 75: 343–346

    Article  CAS  PubMed  Google Scholar 

  • Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, Smith PJ & Reeve AE (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature 362: 749–752

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K, Morrison IM, Taniguchi T & Reeve AE (1997) Epigenetic changes at the insulin-like growth factor II/H19 locus in developing kidney is an early event in Wilms tumorigenesis. Proc Natl Acad Sci USA 94: 5367–5371

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe D, Dao D, Zhao L, Sanderson R, Warburton D, Weiss L, Anyane-Yeboa K & Tycko B (1997) Coding mutations in p57KIP2are present in some cases of Beckwith-Wiedmann syndrome but are rare or absent in Wilms tumors. Am J Hum Genet 61: 295–303

    Article  PubMed  PubMed Central  Google Scholar 

  • Oya M, Schmidt B, Schmitz-Dräger BJ & Schulz WA (1998) Expression of G1 → S transition regulatory molecules in human urothelial cancer. Jap J Cancer Res 89: 719–726

    Article  CAS  Google Scholar 

  • Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE & Feinberg AP (1993) Relaxation of imprinted genes in human cancer. Nature 362: 747–755

    Article  CAS  PubMed  Google Scholar 

  • Reid LH, Crider-Miller SJ, West A, Lee M-H, Massagué J & Weissman BE (1996) Genomic organization of the human p57KIP2gene and its analysis in the G401 Wilms’ tumor assay. Cancer Res 56: 1214–1218

    CAS  PubMed  Google Scholar 

  • Reik W, Brown KW, Schneid H, Le Bouc Y, Bickmore W & Maher ER (1995) Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by an altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet 4: 2379–2385

    Article  CAS  PubMed  Google Scholar 

  • Schulz WA, Krummeck A, Rösinger I, Eickelmann P, Neuhaus C, Ebert T, Schmitz-Dräger BJ & Sies H (1997) Increased frequency of a null-allele for NAD(P)H:quinone oxidoreductase in patients with urological malignancies. Pharmacogenetics 7: 235–239

    Article  CAS  PubMed  Google Scholar 

  • Shaw ME & Knowles MA (1995) Deletion mapping of chromosome 11 in carcinoma of the bladder. Genes Chromosomes Cancer 13: 1–8

    Article  CAS  PubMed  Google Scholar 

  • Smilinich NJ, Day CD, Fitzpatrick GV, Caldwell GM, Lossie AC, Cooper PR, Smallwood AC, Joyce JA, Schofield PN, Reik W, Nicholls RD, Weksberg R, Driscoll DS, Maher ES, Shows TB & Higgins MJ (1999) A maternally methylated CpG island in KrLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedmann Syndrome. Proc Natl Acad Sci USA 96: 8664–8069

    Article  CAS  Google Scholar 

  • Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL & Feinberg AP (1994) Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumor. Nat Genet 7: 433–439

    Article  CAS  PubMed  Google Scholar 

  • Tadokoro K, Fujii H, Inoue T & Yamada M (1991) Polymerase chain reaction (PCR) for detection of ApaI polymorphism at the insulin like growth factor II gene (IGF2). Nucleic Acids Res 19: 6967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi T, Sullivan MJ, Ogawa O & Reeve AE (1995) Epigenetic changes encompassing the IGF2/H19 locus associated with relaxation of IGF2 imprinting and silencing of H19 in Wilms’ tumor. Proc Natl Acad Sci USA 92: 2159–2163

    Article  CAS  PubMed  Google Scholar 

  • Tokino T, Urano T, Furuhata T, Matsushima M, Miyatsu T, Sasaki S & Nakamura Y (1996) Characterization of the human p57KIP2gene: alternative splicing, insertion/deletion polymorphisms in VNTR sequences in the coding region, and mutational analysis. Hum Gen 97: 625–631

    Article  CAS  Google Scholar 

  • Uyeno S, Aoki Y, Nata M, Sagisaka K, Kayama T, Yoshimoto T & Ono T (1996) IGF2 but not H19 shows loss of imprinting in human glioma. Cancer Res 56: 5356–5359

    CAS  PubMed  Google Scholar 

  • Voorter CEM, Ummelen MIJ, Ramaekers FSC & Hopman AHN (1996) Loss of chromosome 11 and 11 p/q imbalances in bladder cancer detected by fluorescence in situ hybridization. Int J Cancer 65: 301–307

    Article  CAS  PubMed  Google Scholar 

  • Weksberg R, Shen DR, Fei YL, Song QL & Squire J (1993) Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet 5: 143–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wong C, De Pinho RA, Harper JW & Elledge SJ (1998) Cooperation between the Cdk inhibitors p27KIP1and p57KIP2in the control of tissue growth and development. Genes & Dev 12: 3162–3167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Urologische Klinik, Heinrich Heine Universität, Moorenstrasse 5, Düsseldorf, D-40225, Germany

    M Oya & W A Schulz

Authors
  1. M Oya
    View author publications

    Search author on:PubMed Google Scholar

  2. W A Schulz
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Oya, M., Schulz, W. Decreased expression of p57KIP2 mRNA in human bladder cancer. Br J Cancer 83, 626–631 (2000). https://doi.org/10.1054/bjoc.2000.1298

Download citation

  • Received: 10 January 2000

  • Revised: 20 April 2000

  • Accepted: 28 April 2000

  • Published: 08 August 2000

  • Issue date: 01 September 2000

  • DOI: https://doi.org/10.1054/bjoc.2000.1298

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • chromosome 11p15.5
  • IGF-II
  • H19
  • quantitative RT-PCR
  • LOH analysis

This article is cited by

  • p57KIP2 control of actin cytoskeleton dynamics is responsible for its mitochondrial pro-apoptotic effect

    • E Kavanagh
    • P Vlachos
    • B Joseph

    Cell Death & Disease (2012)

  • The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network

    • Lakshmanane Boominathan

    Cancer and Metastasis Reviews (2010)

  • CDKN1C/p57kip2is a candidate tumor suppressor gene in human breast cancer

    • Pamela S Larson
    • Benjamin L Schlechter
    • Carol L Rosenberg

    BMC Cancer (2008)

  • p57Kip2 (cdkn1c): sequence, splice variants and unique temporal and spatial expression pattern in the rat pancreas

    • Tamara Potikha
    • Sameer Kassem
    • Benjamin Glaser

    Laboratory Investigation (2005)

  • Silencing of imprinted CDKN1C gene expression is associated with loss of CpG and histone H3 lysine 9 methylation at DMR-LIT1 in esophageal cancer

    • Hidenobu Soejima
    • Tetsuji Nakagawachi
    • Tsunehiro Mukai

    Oncogene (2004)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited