Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 19 September 2000

Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity

  • H M Warenius1,
  • M Jones1,
  • T Gorman1,
  • R McLeish1,
  • L Seabra1,
  • R Barraclough2 &
  • …
  • P Rudland2 

British Journal of Cancer volume 83, pages 1084–1095 (2000)Cite this article

  • 745 Accesses

  • 18 Citations

  • Metrics details

This article has been updated

Abstract

The tumour suppressor gene, p53, and genes coding for positive signal transduction factors can influence transit through cell-cycle checkpoints and modulate radiosensitivity. Here we examine the effects of RAF1 protein on the rate of exit from a G2/M block induced by γ-irradiation in relation to intrinsic cellular radiosensitivity in human cell lines expressing wild-type p53 (wtp53) protein as compared to mutant p53 (mutp53) protein. Cell lines which expressed mutp53 protein were all relatively radioresistant and exhibited no relationship between RAF1 protein and cellular radiosensitivity. Cell lines expressing wtp53 protein, however, showed a strong relationship between RAF1 protein levels and the radiosensitivity parameter SF2. In addition, when post-irradiation perturbation of G2/M transit was compared using the parameter T50 (time after the peak of G2/M delay at which 50% of the cells had exited from a block induced by 2 Gy of irradiation), RAF1 was related to T50 in wtp53, but not mutp53, cell lines. Cell lines which expressed wtp53 protein and high levels of RAF1 had shorter T50s and were also more radiosensitive. These results suggest a cooperative role for wtp53 and RAF1 protein in determining cellular radiosensitivity in human cells, which involves control of the G2/M checkpoint. © 2000 Cancer Research Campaign

Similar content being viewed by others

Distinct functions of wild-type and R273H mutant Δ133p53α differentially regulate glioblastoma aggressiveness and therapy-induced senescence

Article Open access 27 June 2024

APR-246 as a radiosensitization strategy for mutant p53 cancers treated with alpha-particles-based radiotherapy

Article Open access 18 June 2024

NF-κB is involved in the regulation of autophagy in mutant p53 cells in response to ionizing radiation

Article Open access 25 June 2021

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Aloni-Grinstein R, Schwartz D and Rotter V (1995) Accumulation of wild-type p53 protein upon γ-irradiation induces a G2 arrest-dependent immunoglobulin κ light in chain gene expression. EMBO J 7: 1392–1401

    Article  Google Scholar 

  • Barraclough R, Kimbell R and Rudland PS (1987) Differential control of mRNA levels for Thy-1 antigen and laminin in rat mammary epithelial and myoepithelial-like cells. J Cell Physiol 131: 340–393

    Article  Google Scholar 

  • Bischoff JR, Casso D and Beach D (1992) Human p53 inhibits growth in Schizo saccharomyces pombe. Mol Cell Biol 12: 1405–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blagosklonny MV, Schulte TW, Nguyen P, Mimnaugh EG, Trepel J and Neckers L (1995) Taxol induction of p21WAFI and p53 requires c-raf-1. Cancer Res 55: 4623–4626

    CAS  PubMed  Google Scholar 

  • Bristow RG, Jang A, Peacock J, Chung S, Benchimol S and Hill RP (1994) Mutant p53 increases radioresistance in rat embryo fibroblasts simultaneously transfected with HPV16-E7 and/or activated H-ras. Oncogene 9: 1527–1536

    CAS  PubMed  Google Scholar 

  • Bristow RG, Benchimol S and Hill RP (1996) The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiother Oncol 40: 197–223

    Article  CAS  PubMed  Google Scholar 

  • Browning PGW (1996) Proto-oncogene expression and intrinsic cellular radiosensitivity. PhD dissertation. The University of Liverpool: Liverpool, UK,

  • Carbone D, Chiba I and Mitsudomi T (1991) Polymorphism at codon 213 within the p53 gene. Oncogene 6: 1691–1692

    CAS  PubMed  Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ and Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299

    Article  CAS  PubMed  Google Scholar 

  • Deacon J, Peckham MJ and Steel GG (1984) The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother Oncol 2: 317–323

    Article  CAS  PubMed  Google Scholar 

  • de Fromentel C and Soussi T (1992) TP53 tumour suppressor gene – a model for investigating human mutagenesis. Genes Chromosomes Cancer 4: 1–15

    Article  Google Scholar 

  • Fan S, el Deiry WS, Bae I, Freeman J, Jondle D, Bhatia K, Fornace AJ Jr, Magrath I, Kohn KW and O’Connor PM (1994) p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res 54: 5824–5830

    CAS  PubMed  Google Scholar 

  • Fertil B and Malaise EP (1981) Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy. Int J Radiat Oncol Biol Phys 7: 621–629

    Article  CAS  PubMed  Google Scholar 

  • FitzGerald TJ, Henault S, Sakakeeny M, Santucci MA, Pierce JH, Anklesaria P, Kase K, Das I and Greenberger JS (1990) Expression of transfected recombinant oncogenes increase radiation resistance of clonal hematopoietic and fibroblast cell lines selectively at clinical low dose rate. Radiat Res 122: 44–52

    Article  CAS  PubMed  Google Scholar 

  • Guillouf C, Rosselli F, Krishnaraju K, Moustacchi E, Hoffman B and Liebermann DA (1995) p53 involvement in control of G2 exit of the cell cycle: role in DNA damage-induced apoptosis. Oncogene 10: 2263–2270

    CAS  PubMed  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B and Harris C (1991) p53 mutations in human cancers. Science 253: 49–53

    Article  CAS  PubMed  Google Scholar 

  • Iliakis G, Metzger L, Muschel RJ and McKenna WG (1990) Induction and reapir of double strand breaks in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Cancer Res 50: 6575–6579

    CAS  PubMed  Google Scholar 

  • Jamal S and Ziff EB (1995) Raf phosphorylates p53 in vitro and potentiates p53-dependent transcriptional transactivation in vivo. Oncogene 10: 2095–2101

    CAS  PubMed  Google Scholar 

  • Kasid U, Pfeifer A, Weichselbaum RR, Dritschilo A and Mark GE (1987) The raf oncogene is associated with a radiation-resistant human laryngeal cancer. Science 237: 1039–1041

    Article  CAS  PubMed  Google Scholar 

  • Kasid U, Pfeifer A, Brennan T, Beckett M, Weichselbaum RR, Dritschilo A and Mark GE (1989) Effect of antisense c-raf-1 on tumorigenicity and radiation sensitivity of a human squamous carcinoma. Science 243: 1354–1356

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B and Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304–6311

    CAS  PubMed  Google Scholar 

  • Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B and Fornace AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilising p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587–597

    Article  CAS  PubMed  Google Scholar 

  • Kawashima K, Mihara K, Usuki H, Shimizu N and Namba M (1995) Transfected mutant p53 gene increases X-ray-induced cell killing and mutation in human fibroblasts immortalized with 4-nitroquinoline 1-oxide but does not induce neoplastic transformation of the cells. Int J Cancer 61: 76–79

    Article  CAS  PubMed  Google Scholar 

  • Kelland LR, Edwards SM and Steel GG (1988) Induction and rejoining of DNA double-strand breaks in human cervix carcinoma cell lines of differing radiosensitivity. Radiat Res 116: 526–538

    Article  CAS  PubMed  Google Scholar 

  • Khanna KK and Lavin MF (1993) Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene 8: 3307–3312

    CAS  PubMed  Google Scholar 

  • Lee JM and Bernstein A (1993) p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci USA 90: 5742–5746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lees Miller SP, Sakaguchi K, Ullrich SJ, Appella E and Anderson CW (1992) Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transaction domain of human p53. Mol Cell Biol 12: 5041–5049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovric J and Moelling K (1996) Activation of Mil/Raf protein kinases in mitotic cells. Oncogene 12: 1109–1116

    CAS  PubMed  Google Scholar 

  • Mazars GR, Jeanteur P, Lynch HT, Lenoir G and Theillet C (1992) Nucleotide sequence polymorphism in a hotspot mutation region of the p53 gene. Oncogene 7: 781–782

    CAS  PubMed  Google Scholar 

  • McIlwrath AJ, Vasey PA, Ross GM and Brown R (1994) Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity. Cancer Res 54: 3718–3722

    CAS  PubMed  Google Scholar 

  • McIntyre JF, Smith-Sorensen B, Friend SH, Kassell J, Borrensen AL, Yan YX, Russo C, Sato J, Barbier N, Miser J, Malkin D and Gebhardt MC (1994) Germline mutations of p53 tumour suppressor gene in children with osteosarcoma. J Clin Oncol 12: 925–930

    Article  CAS  PubMed  Google Scholar 

  • McKenna WG, Weiss MC, Endlich B, Ling CC, Bakanauskas VJ, Kelsten ML and Muschel RJ (1990) Synergistic effect of the v-myc oncogene with H-ras on radioresistance. Cancer Res 50: 97–102

    CAS  PubMed  Google Scholar 

  • McKenna WG, Iliakis MC, Weiss EJ, Bernhard EJ and Muschel RJ (1991) Increased G2 delay in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Radiat Res 125: 283–287

    Article  CAS  PubMed  Google Scholar 

  • Midgley CA and Lane DP (1997) p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15: 1179–1189

    Article  CAS  PubMed  Google Scholar 

  • Milne DM, Palmer RH and Meek DW (1992) Mutation of the casein kinase II phophorylation site absolishes the anti-proliferative activity of p53. Nucleic Acids Res 20: 5565–5570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milne DM, Campbell DG, Caudwell FB and Meek DW (1994) Phosphorylation of the tumour suppressor protein p53 by mitogen activated protein kinases. J Biol Chem 269: 9253–9260

    CAS  PubMed  Google Scholar 

  • Nunez MI, Villalobos M, Olea N, Valenzuela MT, Pedraza V, McMillan TJ and Ruiz de Almodovar JM (1995) Radiation-induced DNA double-strand break rejoining in human tumour cells. Br J Cancer 71: 311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardo FS, Su M, Borek C, Preffer F, Dombkowski D, Gerweck L and Schmidt EV (1994) Transfection of rat embryo cells with mutant p53 increases the intrinsic radiation resistance. Radiat Res 140: 180–185

    Article  CAS  PubMed  Google Scholar 

  • Paules RS, Levedakou EN, Wilson SJ, Innes CL, Rhodes N, Tlsty TD, Galloway DA, Donehower LA, Tainsky MA and Kaufmann WK (1995) Defective G2 checkpoint function in cells from individuals with familial cancer syndromes. Cancer Res 55: 1763–1773

    CAS  PubMed  Google Scholar 

  • Pirollo KF, Garner R, Yuan SY, Li L, Blattner WA and Chang EH (1989) raf involvement in the simultaneous genetic transfer of the radioresistant and transforming phenotypes. Int J Radiat Biol 55: 783–796

    Article  CAS  PubMed  Google Scholar 

  • Pirollo KF, Tang YA, Villegas Z, Chen Y and Chang EH (1993) Oncogene-transformed NIH 3T3 cells display radiation resistance levels indicative of a signal transduction pathway leading to the radiation-resistant phenotype. Radiat Res 135: 234–243

    Article  CAS  PubMed  Google Scholar 

  • Powell SN and McMillan TJ (1994) The repair fidelity of restriction enzyme-induced double strand breaks in plasmid DNA correlates with radioresistance in human tumor cell lines. Int J Radiat Oncol Biol Phys 29: 1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Radford IR (1994) p53 status, DNA double-strand break repair proficiency and radiation response of mouse lymphoid and myeloid cell lines. Int J Radiat Biol 66: 557–560

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues NR, Rowan A, Smith MEF, Kerr IB, Bodmer WF, Gannon JV and Lane DP (1990) p53 mutations in colorectal cancer. Proc Natl Acad Sci USA 87: 7555–7559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosselli F, Ridet A, Soussi T, Duchaud E, Alapetite C and Moustacchi E (1995) p53-dependent pathway of radio-induced apoptosis is altered in Fanconi anemia. Oncogene 10: 9–17

    CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S and Coulson AR (1997) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Article  Google Scholar 

  • Segawa K, Hokuto J, Minowa A, Okyama K and Takano T (1993) Cyclin E enhances p53 mediated transactivation. FEBS Lett 329: 283–286

    Article  CAS  PubMed  Google Scholar 

  • Schwartz JL, Mustafi R, Beckett MA, Gzyzewski EA, Farhangi E, Grdina DJ, Rotmensch J and Weichselbaum RR (1991) Radiation-induced DNA double-strand break frequencies in human squamous cell carcinoma cell lines of different radiation sensitivities. Int J Radiat Biol 59: 1314–1352

    Article  Google Scholar 

  • Schwartz D, Almog N, Peled A, Goldfinger N and Rotter V (1997) Role of wild type p53 in the G2 phase: regulation of the γ-irradiation-induced delay and DNA repair. Oncogene 15: 2597–2607

    Article  CAS  PubMed  Google Scholar 

  • Shimm DS, Miller PR, Lin T, Moulinier PP and Hill AB (1992) Effects of v-src oncogene activated on radiation sensitivity in drug-sensitive and in multidrug-resistant rat fibroblasts. Radiat Res 129: 149–156

    Article  CAS  PubMed  Google Scholar 

  • Siles E, Villalobos M, Valenzuela MT, Nunez MI, Gordon A, McMillan TJ, Pedraza V and Ruiz de Almodovar JM (1996) Relationship between p53 status and radiosensitivity in human tumour cell lines. Br J Cancer 73: 581–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siliciano JD, Canman C, Taya Y, Sakaguchi K, Appella E and Kastan MB (1998) DNA damage induces phosphorylation of the amino-terminus of p53. Proc 89th AACR 77: 527(abst)

    Google Scholar 

  • Stewart N, Hicks GG, Paraskevas F and Mowat M (1995) Evidence for a second cell cycle block at G2/M by p53. Oncogene 10: 109–115

    CAS  PubMed  Google Scholar 

  • Storey A, Thomas M, Kalita A, Harwood C, Gardiol D, Mantovani F, Breuer J, Leigh IM, Matlashewski G and Banks L (1998) Role of a p53 polymorphism in the development of human papilloma-virus-associated cancer. Nature 393: 229–234

    Article  CAS  PubMed  Google Scholar 

  • Su LN and Little JB (1993) Prolonged cell cycle delay in radioresistant human cell lines transfected with activated ras oncogene and/or simian virus 40 T-antigen. Radiat Res 133: 73–79

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Watanabe M and Miyoshi J (1992) Differences in effects of oncogenes on resistance of gamma rays, ultraviolet light and heat shock. Radiat Res 129: 157–162

    Article  CAS  PubMed  Google Scholar 

  • Tada M, Matsumoto R, Iggo RD, Onimaru R, Shirato H & Sawamuraand Shinohe Y (1998) Selective sensitivity to radiation of cerebral glioblastomas harboring p53 mutations. Cancer Res 58: 1793–1797

    CAS  PubMed  Google Scholar 

  • Takahashi T, Suzuki H, Hida T, Sekido Y, Ariyoshi Y and Heda R (1991) The p53 gene is very frequently mutated in small-cell lung cancer with a distinct nucleotide substitution pattern. Oncogene 6: 1775–1778

    CAS  PubMed  Google Scholar 

  • Warenius HM, Browning PG, Britten RA, Peacock JA and Rapp UR (1994) C-raf-1 proto-oncogene expression relates to radiosensitivity rather than radioresistance. Eur J Cancer 30A: 369–375

    Article  CAS  PubMed  Google Scholar 

  • Warenius HM, Jones MD and Thompson CCM (1996) Exit from G2 phase after 2Gy gamma irradiation is faster in radiosensitive human cells with high expression of the RAF-1 proto-oncogene. Radiat Res 146: 485–493

    Article  CAS  PubMed  Google Scholar 

  • Whitaker SJ, Ung TC and McMillan TJ (1995) DNA double strand break induction and rejoining as determinants of human tumour cell radiosensitivity. A pulsed-field gel electrophoresis study. Int J Radiat Biol 67: 7–18

    Article  CAS  PubMed  Google Scholar 

  • Xia F, Wang X, Wang YH, Tsang NM, Yandell DW, Kelsey KT and Liber HL (1995) Altered p53 status correlates with differences in sensitivity to radiation-induced mutation and apoptosis in two closely related human lymphoblast lines. Cancer Res 55: 12–15

    CAS  PubMed  Google Scholar 

  • Zhen W, Denault CM, Loviscek K, Walter S, Geng L and Vaughan AT (1995) The relative radiosensitivity of TK6 and W1-L2-NS lymphoblastoid cells derived from a common source is primarily determined by their p53 mutational status. Mutat Res 346: 85–92

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University Clinical Departments, Department of Medicine, Human Tumour Biology Group, Oncology Research Unit, The University of Liverpool, The Duncan Building, Daulby Street, Liverpool, L69 3GA, UK

    H M Warenius, M Jones, T Gorman, R McLeish & L Seabra

  2. Cancer and Polio Research Fund Laboratories, School of Biological Sciences, The University of Liverpool, Life Sciences Building, Crown Street, Liverpool, L69 7ZB, UK

    R Barraclough & P Rudland

Authors
  1. H M Warenius
    View author publications

    Search author on:PubMed Google Scholar

  2. M Jones
    View author publications

    Search author on:PubMed Google Scholar

  3. T Gorman
    View author publications

    Search author on:PubMed Google Scholar

  4. R McLeish
    View author publications

    Search author on:PubMed Google Scholar

  5. L Seabra
    View author publications

    Search author on:PubMed Google Scholar

  6. R Barraclough
    View author publications

    Search author on:PubMed Google Scholar

  7. P Rudland
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Warenius, H., Jones, M., Gorman, T. et al. Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity. Br J Cancer 83, 1084–1095 (2000). https://doi.org/10.1054/bjoc.2000.1409

Download citation

  • Received: 16 September 1999

  • Revised: 13 June 2000

  • Accepted: 28 June 2000

  • Published: 19 September 2000

  • Issue date: 01 October 2000

  • DOI: https://doi.org/10.1054/bjoc.2000.1409

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • RAF1
  • p53
  • radiosensitivity
  • exit from G2/M

This article is cited by

  • The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies

    • Julie Earl
    • Daniel Rico
    • Francisco X Real

    BMC Genomics (2015)

  • Enhanced induction of apoptosis in a radio-resistant bladder tumor cell line by combined treatments with X-rays and wortmannin

    • Trinidad Ortiz
    • Miguel Angel Burguillos
    • Joaquín Piñero

    Radiation and Environmental Biophysics (2008)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited