Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Membrane-type 1 matrix metalloproteinase-mediated progelatinase A activation in non-tumorigenic and tumorigenic human keratinocytes
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 24 October 2000

Membrane-type 1 matrix metalloproteinase-mediated progelatinase A activation in non-tumorigenic and tumorigenic human keratinocytes

  • P Baumann1,
  • P Zigrino1,
  • C Mauch1,
  • D Breitkreutz2 &
  • …
  • R Nischt1 

British Journal of Cancer volume 83, pages 1387–1393 (2000)Cite this article

  • 822 Accesses

  • 29 Citations

  • Metrics details

This article has been updated

Abstract

Elevated expression of type IV collagenases (MMP-2 and MMP-9) has been strongly correlated with tumour progression and metastasis in various tumours. Here, we analysed expression and activation of these MMPs in non-tumourigenic HaCaT cells and the malignant HaCaT variant II-4rt. In monolayer cultures, both cell types secreted latent MMP-2 (proMMP-2) in comparable amounts, while MMP-9 production was clearly higher in II-4rtcells. Upon contact with fibrillar collagen type I the malignant II-4rtcells, but not the HaCaT cells, gained the capability to activate proMMP-2. This process is shown to be membrane-associated and mediated by MT1-MMP. Surprisingly, all membrane preparations from either HaCaT cells or II-4rtcells grown as monolayers, as well as within collagen gels, contained considerable amounts of active MT1-MMP. However, within collagen gels HaCaT cells showed significantly higher TIMP-2 levels compared to II-4rtcells. This indicates that TIMP-2 might play a central role for MT1-MMP-mediated gelatinolytic activity. Indeed, collagen type I-induced MT1-MMP-mediated proMMP-2 activation by II-4rtmembranes could be completely abolished by an excess of TIMP-2. In conclusion, our data suggest that MT1-MMP-mediated proMMP-2 activation might be associated with malignant progression of epidermal tumour cells. © 2000 Cancer Research Campaign

Similar content being viewed by others

Multi-layered proteogenomic analysis unravels cancer metastasis directed by MMP-2 and focal adhesion kinase signaling

Article Open access 24 August 2021

SPP1+ macrophages and FAP+ fibroblasts promote the progression of pMMR gastric cancer

Article Open access 31 October 2024

Decoding the impact of MMP1+ malignant subsets on tumor-immune interactions: insights from single-cell and spatial transcriptomics

Article Open access 20 May 2025

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Azzam HS and Thompson EW (1992) Collagen-induced activation of the Mr 72,000 type IV gelatinase in normal and malignant fibroblastoid cells. Cancer Res 52: 4540–4544

    CAS  PubMed  Google Scholar 

  • Birkedal-Hansen H, Moorie WGI, Bodden MK, Birkedal-Hansen B, DeCarlo A and Engler JA (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4: 197–250

    Article  CAS  Google Scholar 

  • Boukamp P, Petrusevska RT, Breitkreutz D, Hornung J, Markham A and Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106: 761–771

    Article  CAS  Google Scholar 

  • Boukamp P, Stanbridge EJ, Foo DY, Cerutti PA and Fusenig NE (1990) c-Ha-ras oncogene expression in immortalized human keratinocytes (HaCaT) alters growth potential in vivo but lacks correlation with malignancy. Cancer Res 50: 2840–2847

    CAS  PubMed  Google Scholar 

  • Breitkreutz D, Schoop VM, Mirancea N, Baur M, Stark H-J and Fusenig NE (1998) Epidermal differentiation and basement membrane formation by HaCaT cells in surface transplants. Eur J Cell Biol 75: 273–286

    Article  CAS  Google Scholar 

  • Brown PD, Levy AT, Margulies IM, Liotta LA and Stetler-Stevenson WG (1990) Independent expression and cellular processing of Mr 72,000 type IV collagenase and interstitial collagenase in human tumorigenic cell lines. Cancer Res 50: 6184–6191

    CAS  PubMed  Google Scholar 

  • Butler GS, Will H, Atkinson SJ and Murphy G (1997) Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur J Biochem 244: 653–657

    Article  CAS  Google Scholar 

  • Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, Schade van Westrum S, Crabbe T, Clements J, d'Ortho MP and Murphy G (1998) The TIMP-2 membrane type metalloproteinase receptor regulates the concentration and efficient activation of progelatinase A. J Biol Chem 273: 871–880

    Article  CAS  Google Scholar 

  • Cao J, Rehemtulla A, Bahou W and Zucker S (1996) Membrane-type matrix metalloproteinase 1 activates pro-gelatinase A without furin cleavage of the N-terminal domain. J Biol Chem 271: 30174–30180

    Article  CAS  Google Scholar 

  • Carlson SG, Fawcett TW, Bartlett JD, Bernier M and Holbrook NJ (1993) Regulation of the C/EBP related gene gadd153 by glucose deprivation. Mol Cell Biol 13: 4736–4744

    Article  CAS  Google Scholar 

  • Collier IE, Wilhelm SM, Eisen AZ, Marmer BL, Grant GA, Seltzer JL, Kronberger He C, Bauer EA and Goldberg GI (1988) H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem 263: 6579–6587

    CAS  PubMed  Google Scholar 

  • Gilles C, Polette M, Seiki M, Birembaut P and Thompson EW (1997) Implication of collagen type I-induced membrane-type 1 matrix metalloproteinase expression and matrix metalloproteinase-2 activation in the metastatic progression of breast carcinomas. Lab Invest 76: 651–660

    CAS  PubMed  Google Scholar 

  • Gum R, Lengyel E, Juarez J, Chen JH, Sato H, Seiki M and Boyd D (1996) Stimulation of 92-kDa gelatinase B promoter activity by ras is mitogen-activated protein kinase 1 independent and requires multiple transcription factor binding sites including closely spaced PEA3/ets and AP-1 sequences. J Biol Chem 271: 10672–10680

    Article  CAS  Google Scholar 

  • Haas TI, Davis SJ and Madri JA (1998) Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinase MT1-MMP and MMP-2 in microvascular endothelial cells. J Biol Chem 273: 3604–3610

    Article  CAS  Google Scholar 

  • Herron GS, Benda MJ, Clark EJ, Gavrilovic J and Werb Z (1986) Secretion of metalloproteinases by stimulated capillary endothelial cells. J Biol Chem 261: 2814–2818

    CAS  PubMed  Google Scholar 

  • Itoh Y, Ito A, Iwata K, Tanazawa K, Mori Y and Nagase H (1998) Plasma membrane-bound tissue inhibitor of metalloproteinases (TIMP)-2 specifically inhibits matrix metalloproteinase 2 (gelatinase A) activation on the cell surface. J Biol Chem 273: 24360–24367

    Article  CAS  Google Scholar 

  • Kazes I, Delarue F, Hagege J, Bouzhir-Sima L, Rondeau E, Sraer JD and Nguyen G (1998) Soluble latent membrane-type 1 matrix metalloprotease secreted by mesangial cells is activated by urokinase. Kidney Int 54: 1976–1984

    Article  CAS  Google Scholar 

  • Kurschat P, Zigrino P, Nischt R, Breitkopf K, Steurer P, Klein EC, Krieg T and Mauch C (1999) Tissue inhibitor of matrix metalloproteinase-2 regulates matrix metalloproteinase-2 activation by modulation of membrane-type 1 matrix metalloproteinase activity in high and low invasive melanoma cells. J Biol Chem 274: 21056–21062

    Article  CAS  Google Scholar 

  • Kusukawa J, Sasaguri Y, Shima I, Kameyama T and Morimatsu M (1993) Expression of matrix metalloproteinase-2 related to lymph node metastasis of oral squamous cell carcinomas. A clinicopathologic study. Am J Clin Pathol 99: 18–23

    Article  CAS  Google Scholar 

  • Lehti K, Lohi J, Valtanen H and Keski-Oja J (1998) Proteolytic processing of membrane-type 1 matrix metalloproteinase is associated with gelatinase A activation at the cell surface. Biochem J 334: 345–353

    Article  CAS  Google Scholar 

  • Maquoi E, Noel A, Frankenne F, Angliker H, Murphy G and Foidart JM (1998) Inhibition of matrix metalloproteinase-2 maturation and HT 1080 invasiveness by a synthetic furin inhibitor. FEBS Lett 242: 262–266

    Article  Google Scholar 

  • Mauch C, Hatamochi A, Scharffetter K and Krieg T (1988) Regulation of collagen synthesis in fibroblast within a three-dimensional collagen gel. Exp Cell Res 178: 493–503

    Article  CAS  Google Scholar 

  • Meade-Tollin LC, Boukamp P, Fusenig NE, Bowen CPR, Tsang TC and Bowden GT (1998) Differential expression of matrix metalloproteinases in activated c-rasHa-transfected immortalized human keratinocytes. Br J Cancer 77: 724–730

    Article  CAS  Google Scholar 

  • Nakamura H, Ueno H, Yamashita K, Shimada T, Yamamoto E, Noguchi M, Fujimoto N, Sato H, Seiki M and Okadea Y (1999) Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human papillary thyroid carcinomas. Cancer Res 59: 467–473

    CAS  PubMed  Google Scholar 

  • Okada A, Beloqc JP, Rouyer N, Chenard MP, Rio MC, Chambon P and Basset P (1995) Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, head and neck carcinomas. Proc Natl Acad Sci USA 92: 2730–2734

    Article  CAS  Google Scholar 

  • Okumura Y, Sato H, Seiki M and Kido H (1997) Proteolytic activation of the precursor of membrane-type 1 matrix metalloproteinase by human plasmin. FEBS Lett 402: 181–184

    Article  CAS  Google Scholar 

  • Pei D (1999) Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP. J Biol Chem 274: 8925–8933

    Article  CAS  Google Scholar 

  • Pei D and Weiss SJ (1996) Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J Biol Chem 271: 9135–9140

    Article  CAS  Google Scholar 

  • Puente XS, Pendas AM, Ilano E, Velasco G and Lopez-Otin C (1996) Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res 56: 944–949

    CAS  PubMed  Google Scholar 

  • Pyke C, Ralfkiaer EH, Huhtala P, Hurskaninen T, Dano K and Tryggvason K (1992) Localization of messenger RNA for Mr 72,000 and 92,000 type IV collagenases in human skin cancers by in situ hybridization. Cancer Res 52: 1336–1241

  • Sato H, Takino T, Okada Y, Shinagawa A, Yamamoto E and Seiki M (1994) A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature 370: 61–65

    Article  CAS  Google Scholar 

  • Sato H, Takino T, Kinoshita T, Imai K, Okada Y, Stetler-Stevenson WG and Seiki M (1996) Cell surface binding and activation of gelatinase A induced by expression of membrane-type matrix metalloproteinase (MT1-MMP). FEBS Lett 385: 238–240

    Article  CAS  Google Scholar 

  • Seltzer JL, Lee AY, Akers KT, Sudbeck B, Southon EA, Wayner EA and Eisen AZ (1994) Activation of 72-kDa type IV collagenase/gelatinase by normal fibroblasts in collagen lattices is mediated by integrin receptors but is not related to lattice contraction. Exp Cell Res 213: 365–374

    Article  CAS  Google Scholar 

  • Stetler-Stevenson WG, Brown PD, Onisto M, Levy AT and Liotta LA (1990) Tissue inhibitor of metalloproteinase-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. J Biol Chem 265: 13933–13938

    CAS  PubMed  Google Scholar 

  • Stetler-Stevenson WG, Aznavoorian S and Liotta LA (1993) Tumor cell interaction with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9: 541–573

    Article  CAS  Google Scholar 

  • Stieneke-Grober A, Vey M, Angliker H, Shaw E, Thomas G, Roberts C, Klenk HD and Garten W (1992) Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J 11: 2407–2414

    Article  CAS  Google Scholar 

  • Strongin AY, Collier I, Banniko G, Marmer BL, Grant GA and Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270: 5331–5338

    Article  CAS  Google Scholar 

  • Takino T, Sato H, Shinagawa A and Seiki M (1995) Identification of the second membrane-type matrix metalloproteinase (MT-MMP2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J Biol Chem 270: 23013–23020

    Article  CAS  Google Scholar 

  • Tomakidi P, Mirancea N, Fusenig NE, Herold-Mende C, Bosch FX and Breitkreutz D (1999) Defects of basement membrane and hemidesmosome structure correlate with malignant phenotype and stromal interactions in HaCaT-Ras xenografts. Differentiation 64: 263–275

    Article  CAS  Google Scholar 

  • Tsunezuka Y, Kinoh H, Takino T, Watanabe Y, Okada Y, Shinagawa A, Sato H and Seiki M (1996) Expression of membrane-type matrix metalloproteinase-1 (MT1-MMP) in tumor cells enhances pulmonary metastasis in an experimental metastasis assay. Cancer Res 56: 5678–5683

    CAS  PubMed  Google Scholar 

  • Will H and Hinzmann B (1995) cDNA sequence and mRNA distribution of a novel human matrix metalloproteinase with a potential transmembrane domain. Eur J Biochem 231: 602–608

    Article  CAS  Google Scholar 

  • Will H, Atkinson SJ, Butler GS, Smith B and Murphy G (1996) The soluble catalytic domain of type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. J Biol Chem 271: 17119–17123

    Article  CAS  Google Scholar 

  • Yu AE, Hewitt RE, Kleiner DE and Stetler-Stevenson WG (1997) Molecular regulation of cellular invasion – role of gelatinase A and TIMP-2. Biochem Cell Biol 74: 823–831

    Article  Google Scholar 

  • Zucker S, Drews M, Conner C, Foda HD, DeClerk YA, Langley KE, Bahou WF, Docherty AJP and Cao J (1998) Tissue inhibitor of metalloproteinase- (TIMP-2) binds to the catalytic domain of the cell surface receptor, membrane type 1-matrix metalloproteinase 1 (MT1-MMP). J Biol Chem 273: 1216–1222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Dermatology, University of Cologne, Köln, 50924, Germany

    P Baumann, P Zigrino, C Mauch & R Nischt

  2. Division of Carcinogenesis and Differentiation, German Cancer Research Center, Heidelberg, 69120, Germany

    D Breitkreutz

Authors
  1. P Baumann
    View author publications

    Search author on:PubMed Google Scholar

  2. P Zigrino
    View author publications

    Search author on:PubMed Google Scholar

  3. C Mauch
    View author publications

    Search author on:PubMed Google Scholar

  4. D Breitkreutz
    View author publications

    Search author on:PubMed Google Scholar

  5. R Nischt
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Baumann, P., Zigrino, P., Mauch, C. et al. Membrane-type 1 matrix metalloproteinase-mediated progelatinase A activation in non-tumorigenic and tumorigenic human keratinocytes. Br J Cancer 83, 1387–1393 (2000). https://doi.org/10.1054/bjoc.2000.1454

Download citation

  • Received: 11 May 2000

  • Revised: 12 July 2000

  • Accepted: 18 July 2000

  • Published: 24 October 2000

  • Issue date: 01 November 2000

  • DOI: https://doi.org/10.1054/bjoc.2000.1454

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • type IV collagenases
  • activation
  • keratinocytes
  • HaCaT-ras
  • cell–matrix interactions
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited