Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Definition of the role of chromosome 9p21 in sporadic melanoma through genetic analysis of primary tumours and their metastases
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 05 December 2000

Definition of the role of chromosome 9p21 in sporadic melanoma through genetic analysis of primary tumours and their metastases

  • G Palmieri1,
  • A Cossu2,
  • P A Ascierto3,
  • G Botti3,
  • M Strazzullo3,
  • A Lissia2,
  • M Colombino1,
  • M Casula1,
  • C Floris4,
  • F Tanda2,
  • M Pirastu1,
  • G Castello3 &
  • the Melanoma Cooperative Group

British Journal of Cancer volume 83, pages 1707–1714 (2000)Cite this article

  • 1221 Accesses

  • 37 Citations

  • Metrics details

This article has been updated

Abstract

Malignant melanoma (MM) is thought to arise by sequential accumulation of genetic alterations in normal melanocytes. Previous cytogenetic and molecular studies indicated the 9p21 as the chromosomal region involved in MM pathogenesis. In addition to the CDKN genes (p16/CDKN2A, p15/CDKN2B and p19ARF, frequently inactivated in familial MM), widely reported data suggested the presence within this region of other melanoma susceptibility gene(s). To clearly assess the role of the 9p21 region in sporadic melanoma, we evaluated the presence of microsatellite instability (MSI) and loss of heterozygosity (LOH) in primary tumours as well as in synchronous or asynchronous metastases obtained from the same MM patients, using 9 polymorphic markers from a 17-cM region at 9p21. LOH and MSI were found in 27 (41%) and 11 (17%), respectively, out of 66 primary tumours analysed. In corresponding 58 metastases, MSI was found at higher rate (22; 38%), whereas a quite identical pattern of allelic deletions with 27 (47%) LOH+ cases were observed. Although the CDKN locus was mostly affected by LOH, an additional region of common allelic deletion corresponding to marker D9S171 was also identified. No significant statistical correlation between any 9p21 genetic alteration (LOH, MSI or both) and clinicopathological parameters was observed. © 2000 Cancer Research Campaign http://www.bjcancer.com

Similar content being viewed by others

Improving diagnostic accuracy in atypical melanocytic tumors using p16 immunohistochemistry and 9p21 fluorescence in situ hybridization: analysis of 206 second opinion cases

Article Open access 03 April 2025

Deletion of 17p in cancers: Guilt by (p53) association

Article Open access 18 February 2025

A model workflow for microfluidic enrichment and genetic analysis of circulating melanoma cells

Article Open access 02 May 2025

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Bahuau M, Vidaud D, Jenkins RB, Bieche I, Kimmel DW, Assouline B, Smith JS, Alderete B, Cayuela J-M, Harpey J-P, Caille B and Vidaud M (1998) Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumors. Cancer Res 58: 2298–2303

    PubMed  CAS  Google Scholar 

  • Batova A, Diccianni MB, Yu JC, Nobori T, Link MP, Pullen J and Yu AL (1997) Frequent and selective methylation of p15 and deletion of both p15 and p16 in T-cell acute lymphoblastic leukemia. Cancer Res 57: 832–836

    PubMed  CAS  Google Scholar 

  • Berwick M and Halpern AH (1997) Melanoma epidemiology. Curr Opin Oncol 9: 178–182

    Article  CAS  PubMed  Google Scholar 

  • Birindelli S, Tragni G, Bartoli C, Ranzani GN, Rilke F, Pierotti MA and Pilotti S (2000) Detection of microsatellite alterations in the spectrum of melanocytic nevi in patients with or without individual or family history of melanoma. Int J Cancer 86: 255–261

    Article  CAS  PubMed  Google Scholar 

  • Borg A, Johansson U, Johansson O, Håkansson S, Westerdahl J, Måsbäck A, Olsson H and Ingvar C (1996) Novel p16 mutation in familial melanoma in Southern Sweden. Cancer Res 56: 2497–2500

    PubMed  CAS  Google Scholar 

  • Cairns P, Polascik TJ, Eby Y, Tokino K, Califano J, Merlo A, Mao L, Herath J, Jenkins R and Westra W (1995) Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nat Genet 11: 210–212

    Article  CAS  PubMed  Google Scholar 

  • Costello JF, Berger MS, Huang HS and Cavenee WK (1996) Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res 56: 2405–2410

    PubMed  CAS  Google Scholar 

  • Fitzgerald MG, Harkin DP, Silva-Arrieta S, MacDonald DJ, Lucchina LC, Unsal H, O'Neil E, Koh J, Finkelstein DM, Isselbacher KJ, Sober AJ and Haber DA (1996) Prelevance of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. Proc Natl Acad Sci USA 93: 8541–8545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores JF, Walker GJ, Glendening JM, Haluska FG, Castresana JS, Rubio MP, Pastorfide GC, Boyer LA, Kao WH, Bulyk ML, Barnhill RL, Hayward NK, Housman DE and Fountain JW (1996) Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res 56: 5023–5032

    CAS  PubMed  Google Scholar 

  • Foulkes WD, Flanders TY, Pollock PM and Hayward NK (1997) The CDKN2A (p16) gene and human cancer. Molec Med 3: 5–20

    Article  CAS  Google Scholar 

  • Fountain JW, Karayiorgou M, Ernstoff MS, Kirkwood JM, Vlock DR, Titus-Ernstoff L, Bouchard B, Vijayasaradhi S, Houghton AN, Lahti J, Kidd VJ, Housman DE and Dracopoli NC (1992) Homozygous deletion within human chromosome band 9p21 in melanoma. Proc Natl Acad Sci USA 89: 10557–10561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto A, Morita R, Hatta N, Takehara K and Takata M (1999) p16INK4a inactivation is not frequent in uncultured sporadic primary cutaneous melanoma. Oncogene 18: 2527–2532

    Article  CAS  PubMed  Google Scholar 

  • Gonzalgo ML, Bender CM, You EH, Glendening JM, Flores JF, Walker GJ, Hayward NK, Jones PA and Fountain JW (1997) Low frequency of p16/CDKN2A methylation in sporadic melanoma: comparative approaches for methylation analysis of primary tumors. Cancer Res 57: 5336–5347

    PubMed  CAS  Google Scholar 

  • Haluska FG and Hodi FS (1998) Molecular genetics of familial cutaneous melanoma. J Clin Oncol 16: 670–682

    Article  CAS  PubMed  Google Scholar 

  • Healy E, Rehman I, Angus B and Rees JL (1995) Loss of heterozygosity in sporadic primary cutaneous melanoma. Genes Chromosomes Cancer 12: 152–156

    Article  CAS  PubMed  Google Scholar 

  • Healy E, Sikkin S and Rees JL (1996) Infrequent mutation of p16INK4 in sporadic melanoma. J Invest Dermatol 107: 318–321

    Article  CAS  PubMed  Google Scholar 

  • Healy E, Belgaid C, Takata M, Harrison D, Zhu NW, Burd DA, Rigby HS, Matthews JN and Rees JL (1998) Prognostic significance of allelic losses in primary melanoma. Oncogene 16: 2213–2218

    Article  CAS  PubMed  Google Scholar 

  • Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, Hussey C, Tran T, Miki Y, Weaver-Feldhaus J, McClure M, Aitken JF, Anderson DE, Bergman W, Frants R, Goldar DE, Green A, MacLennan R, Martin NG, Meyer LJ, Youl P, Zone JJ, Skolnick MH and Cannon Albright LA (1994a) Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet 8: 22–26

    Article  CAS  Google Scholar 

  • Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stockert E, Day RS, Johnson BE and Skolnick MH (1994b) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264: 436–440

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Smeds J, Lundh-Rozell B and Hemminki K (1999) Loss of heterozygosity at chromosome 9p21 (INK4-p14ARF locus): homozygous deletions and mutations in the p16 and p14ARF genes in sporadic primary melanomas. Melanoma Res 9: 138–147

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Dong SM, Shin MS, Kim SY, Lee SH, Kang SJ, Lee JD, Kim CS, Kim SH and Yoo NJ (1997) Genetic alterations of p16INK4a and p53 genes in sporadic dysplastic nevus. Biochem Biophys Res Commun 237: 667–672

    Article  CAS  PubMed  Google Scholar 

  • Little M and Wainwright B (1995) Methylation and p16: suppressing the suppressor. Nature Med 1: 633–634

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Godstein AM, Tucker MA, Brill H, Gruis NA, Hogg D and Lassam NJ (1997) Affected members of melanoma-prone families with linkage to 9p21 but laking mutations in CDKN2A do not harbor mutations in the coding regions of either CDKN2B or p19ARF. Genes Chromosomes Cancer 19: 52–54

    Article  PubMed  Google Scholar 

  • Liu L, Dilworth D, Gao L, Monzon J, Summers A, Lassam N and Hogg D (1999) Mutation of the CDKN2A 5′ UTR creates an aberrant initiation codon and predisposes to melanoma. Nat Genet 21: 128–132

    Article  CAS  PubMed  Google Scholar 

  • Merbs SL and Sidransky D (1999) Analysis of p16 (CDKN2/MTS-1/INK4A) alterations in primary sporadic uveal melanoma. Invest Ophthalmol Vis Sci 40: 779–783

    PubMed  CAS  Google Scholar 

  • Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB and Sidransky D (1995) 5′ CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTS1 in human cancers. Nature Med 1: 686–692

    Article  CAS  PubMed  Google Scholar 

  • Morita R, Fujimoto A, Hatta N, Takehara K and Takata M (1998) Comparison of genetic profiles between primary melanomas and their metastases reveals genetic alterations and clonal evolution during progression. J Invest Dermatol 111: 919–924

    Article  CAS  PubMed  Google Scholar 

  • Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K and Carson DA (1994) Deletions of the cyclin dependent Kinase-4 inhibitor gene in multiple human cancers. Nature 368: 753–756

    Article  CAS  PubMed  Google Scholar 

  • Ohgaki K, Minobe K, Kurose K, Iida A, Habuchi T, Ogawa O, Kubota Y, Akimoto M and Emi M (1999) Two target regions of allelic loss on chromosome 9 in urinary-bladder cancer. Jpn J Cancer Res 90: 957–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta M, Berd D, Shimizu M, Nagai H, Cotticelli MG, Mastrangelo M, Shields JA, Shields CL, Croce CM and Huebner K (1996) Deletion mapping of chromosome 9p21-p22 surronding the CDKN2 locus in melanoma. Int J Cancer 65: 762–767

    Article  CAS  PubMed  Google Scholar 

  • Palmieri G, Strazzullo M, Ascierto PA, Satriano SM, Daponte A and Castello G for the Melanoma Cooperative Group (1999) Polymerase chain reaction-based detection of circulating melanoma cells as an effective marker of tumor progression. J Clin Oncol 17: 304–311

    Article  CAS  PubMed  Google Scholar 

  • Perinchery G, Bukurov N, Nakajima K, Chang J, Li LC and Dahiya R (1999) High frequency of deletion on chromosome 9p21 may harbor several tumor-suppressor genes in human prostate cancer. Int J Cancer 83: 610–614

    Article  CAS  PubMed  Google Scholar 

  • Peris K, Keller G, Chimenti S, Amantea A, Kerl H and Hofler H (1995) Microsatellite instability and loss of heterozygosity in melanoma. J Invest Dermatol 105: 625–628

    Article  CAS  PubMed  Google Scholar 

  • Pisano M, Cossu A, Persico I, Palmieri G, Angius A, Casu G, Palomba G, Sarobba MG, Rocca PC, Dedola MF, Olmeo N, Pasca A, Budroni M, Marras V, Pisano A, Farris A, Massarelli G, Pirastu M and Tanda F (2000) Identification of a founder BRCA2 mutation in Sardinia. Br J Cancer 82: 553–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platz A, Hanson J, Mansson-Brahme E, Lagerlöf B, Linder S, Lundqvist E, Sevigny P, Inganäs M and Ringborg U (1997) Screening of germline mutations in the CDKN2A and CDKN2B genes in Swedish families withh ereditary cutaneous melanoma. J Natl Cancer Inst 89: 697–702

    Article  CAS  PubMed  Google Scholar 

  • Pollock PM, Pearson JV and Hayward NK (1996) Compilation of somatic mutations of the CDKN2 gen in human cancers: non-random distribution of base substitutions. Genes Chromosom Cancer 15: 77–88

    Article  CAS  PubMed  Google Scholar 

  • Reed JA, Loganzo F, Shea CR, Walker GJ, Flore JF, Glendening JM, Bogdany JK, Shiel MJ, Haluska FG, Fountain JW and Albino AP (1995) Loss of expression of the p16/cyclin-dependent kinase inhibitor 2 tumor suppressor gene in melanocityc lesion correlates with invasive stage of tumor progression. Cancer Res 55: 2713–2718

    CAS  PubMed  Google Scholar 

  • Ruben A, Babilas P, Baron JM, Hofheinz A, Neis M, Sels F and Sporkert M (2000) Analysis of tumor cell evolution in a melanoma: evidence of mutational and selective pressure for loss of p16ink4 and for microsatellite instability. J Invest Dermatol 114: 14–20

    Article  Google Scholar 

  • Ruiz A, Puig S, Lynch M, Castel T and Estivill X (1998) Retention of the CDKN2A locus and low frequency of point mutations in primary and metastatic cutaneous malignant melanoma. Int J Cancer 76: 312–316

    Article  CAS  PubMed  Google Scholar 

  • Schuchter LM (1997) Melanoma and other skin neoplasms. Curr Opin Oncol 9: 175–177

    Article  CAS  PubMed  Google Scholar 

  • Smith-Sorenson B and Hoving E (1996) CDKN2A [P16(INK4A)] somatic and germline mutations. Hum Mutat 7: 294–303

    Article  Google Scholar 

  • Soufir N, Avril M-F, Chompret A, Demenais F, Bombled J, Spatz A, Stoppa-Lyonnet D, the French Familial Melanoma Study Group Bernard J and Bressac-de Paillerets B (1998) Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. Hum Mol Genet 7: 209–216

    Article  CAS  PubMed  Google Scholar 

  • Talwalkar VR, Scheiner M, Hedges LK, Butler MG and Schwartz HS (1998) Microsatellite instability in malignant melanoma. Cancer Genet Cytogenet 104: 111–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner SN, Wagner C, Briedigkeit L and Goos M (1998) Homozygous deletion of the p16INK4a and the p15INK4b tumour suppressor genes in a subset of human sporadic cutaneous malignant melanoma. Br J Dermatol 138: 13–21

    Article  CAS  PubMed  Google Scholar 

  • Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ, Hayward N and Dracopoli NC (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nature Gen 12: 97–99

    Article  CAS  Google Scholar 

Download references

Author information

Author notes
  1. Melanoma Cooperative Group: Aprea P, Ascierto PA, Botti G, Caracò C, Castello G, Celentano E, Comella C, Daponte A, Graziano F, Mozzillo N, Parasole R, Picone A, National Tumor Institute, Naples, Italy; Bosco L, Prota G, Satriano R, University of Naples, Italy; D'Urso M, International Institute of Genetics and Biophysics, C.N.R., Naples, Italy; Palmieri G, Institute of Molecular Genetics, C.N.R., Alghero (SS), Italy

Authors and Affiliations

  1. Institute of Molecular Genetics, C.N.R., Alghero (SS), Casella Postale, Santa Maria La Palma (Sassari), 07040, Italy

    G Palmieri, M Colombino, M Casula & M Pirastu

  2. Institute of Pathology, University of Sassari, Viale San Pietro 10, Sassari, 07100, Italy

    A Cossu, A Lissia & F Tanda

  3. National Tumor Institute ‘G. Pascale', Via M. Semmola, Naples, 80131, Italy

    P A Ascierto, G Botti, M Strazzullo & G Castello

  4. Oncologic Hospital ‘A: Businco’, A.S.L. 8, Via Jenner, Cagliari, 09100, Italy

    C Floris

Authors
  1. G Palmieri
    View author publications

    Search author on:PubMed Google Scholar

  2. A Cossu
    View author publications

    Search author on:PubMed Google Scholar

  3. P A Ascierto
    View author publications

    Search author on:PubMed Google Scholar

  4. G Botti
    View author publications

    Search author on:PubMed Google Scholar

  5. M Strazzullo
    View author publications

    Search author on:PubMed Google Scholar

  6. A Lissia
    View author publications

    Search author on:PubMed Google Scholar

  7. M Colombino
    View author publications

    Search author on:PubMed Google Scholar

  8. M Casula
    View author publications

    Search author on:PubMed Google Scholar

  9. C Floris
    View author publications

    Search author on:PubMed Google Scholar

  10. F Tanda
    View author publications

    Search author on:PubMed Google Scholar

  11. M Pirastu
    View author publications

    Search author on:PubMed Google Scholar

  12. G Castello
    View author publications

    Search author on:PubMed Google Scholar

Consortia

the Melanoma Cooperative Group

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Palmieri, G., Cossu, A., Ascierto, P. et al. Definition of the role of chromosome 9p21 in sporadic melanoma through genetic analysis of primary tumours and their metastases. Br J Cancer 83, 1707–1714 (2000). https://doi.org/10.1054/bjoc.2000.1513

Download citation

  • Received: 16 May 2000

  • Revised: 14 August 2000

  • Accepted: 16 August 2000

  • Published: 05 December 2000

  • Issue date: 01 December 2000

  • DOI: https://doi.org/10.1054/bjoc.2000.1513

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • malignant melanoma
  • chromosome 9p21, polymerase chain reaction
  • microsatellite analysis
  • tumour progression

This article is cited by

  • A phase II study of cell cycle inhibitor UCN-01 in patients with metastatic melanoma: a California Cancer Consortium trial

    • Tianhong Li
    • Scott D. Christensen
    • David R. Gandara

    Investigational New Drugs (2012)

  • High Frequency of p16INK4A Promoter Methylation in NRAS-Mutated Cutaneous Melanoma

    • Anders Jonsson
    • Rainer Tuominen
    • Suzanne Egyhazi

    Journal of Investigative Dermatology (2010)

  • Genome-wide association study identifies variants at 9p21 and 22q13 associated with development of cutaneous nevi

    • Mario Falchi
    • Veronique Bataille
    • Timothy D Spector

    Nature Genetics (2009)

  • LOH analysis of free DNA in the plasma of patients with mucosal malignant melanoma in the head and neck

    • Ryo Takagi
    • Daisuke Nakamoto
    • Hirohiko Tsujii

    International Journal of Clinical Oncology (2007)

  • Increased C-MYC copy numbers on the background of CDKN2A loss is associated with improved survival in nodular melanoma

    • Denitsa Koynova
    • Ekaterina Jordanova
    • Nelleke Gruis

    Journal of Cancer Research and Clinical Oncology (2007)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited