Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 03 January 2001

Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases

  • G M Kraehn1,2 na1,
  • J Utikal1 na1,
  • M Udart1,
  • K M Greulich1,3,
  • G Bezold1,
  • P Kaskel1,
  • U Leiter1 &
  • …
  • R U Peter1 

British Journal of Cancer volume 84, pages 72–79 (2001)Cite this article

  • 1827 Accesses

  • 113 Citations

  • Metrics details

This article has been updated

Abstract

Amplification and overexpression of the c-myc gene have been associated with neoplastic transformation in a plethora of malignant tumours. We applied interphase fluorescence in situ hybridization (FISH) with a locus-specific probe for the c-myc gene (8q24) in combination with a corresponding chromosome 8 α-satellite probe to evaluate genetic alterations in 8 primary melanomas and 33 advanced melanomas and compared it to 12 melanocytic nevi, 7 safety margins and 2 cases of normal skin. Additionally, in metaphase spreads of 7 melanoma cell lines a whole chromosome 8 paint probe was used. We investigated the functionality of the c-myc gene by detecting c-myc RNA expression with RT-PCR and c-myc protein by immunohistochemistry. 4/8 primary melanomas and 11/33 melanoma metastases showed additional c-myc signals relative to the centromere of chromosome 8 copy number. None of the nevi, safety margins or normal skin samples demonstrated this gain. In 2/7 melanoma cell lines (C32 and WM 266–4) isochromosome 8q formation with a relative gain of c-myc copies and a loss of 8p was observed. The highest c-myc gene expression compared to GAPDH was found in melanoma metastases (17.5%). Nevi (6.6%) and primary melanomas (5.0%) expressed the c-myc gene on a lower level. 72.7% of the patients with c-myc extra copies had visceral melanoma metastases (UICC IV), patients without c-myc gain in 35.0% only. The collective with additional c-myc copies also expressed the gene on a significantly higher level. These results indicate that a c-myc gain in relation to the centromere 8 copy number might be associated with advanced cutaneous melanoma. © 2001 Cancer Research Campaign

Similar content being viewed by others

A novel prognostic model for cutaneous melanoma based on an immune-related gene signature and clinical variables

Article Open access 27 November 2022

Exploration and validation of metastasis-associated genes for skin cutaneous melanoma

Article Open access 29 July 2022

Protooncogene MYC drives human melanocyte melanogenesis and senescence

Article 12 January 2022

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Balch CM, Soong SJ, Shaw HM and Milton GW (1985) An analysis of prognostic factors in 4000 patients with cutaneous melanoma. Balch CM, Milton GW, Shaw HM, Soong SJ (eds) Cutaneous melanoma. Clinical management and treatment results worldwide, Lippincott: Philadelphia. pp. 321–352

    Google Scholar 

  • Bar-Am I, Mor O, Yeger H, Shiloh Y and Avivi L (1992) Detection of amplified DNA sequences in human tumor cell lines by fluorescence in situ hybridization. Gene Chromosome Canc 4: 314–320

    Article  CAS  Google Scholar 

  • Bergman R, Lurie M, Kerner H, Kilim S and Friedman-Birnbaum R (1997) Mode of c-myc protein expression in Spitz nevi, common melanocytic nevi and malignant melanomas. J Cutan Pathol 24: 219–222

    Article  CAS  PubMed  Google Scholar 

  • Berns EM, Klijn JG, van Putten WL, van Staveren IL, Portengen H and Foekens JA (1992) C-myc amplification is a better prognostic factor than HER 2/ neu amplification in primary breast cancer. Cancer Res 52: 1107–1113

    CAS  Google Scholar 

  • Boni R, Bantschapp O, Muller B and Burg G (1998) C-myc is not useful as prognostic immunohistochemical marker in cutaneous melanoma. Dermatology 196: 288–291

    Article  CAS  PubMed  Google Scholar 

  • Chin L, Liégeois N, DePinho RA and Schreiber-Agus N (1996) Functional interactions among members of the myc superfamily and potential relevance to cutaneous growth and development. J Invest Dermatol Symp Proc 1: 128–135

    CAS  Google Scholar 

  • Citro G, D'Agnano I, Leonetti C, Perini R, Bucci B, Zon G, Calabretta B and Zupi G (1998) C-myc antisense oligodeoxynucleotides enhance the efficacy of cisplatin in melanoma chemotherapy in vitro and in nude mice. Cancer Res 58: 283–289

    CAS  PubMed  Google Scholar 

  • Cole MD (1986) The myc oncogene: its role in transformation and differentiation. Annu Rev Genet 20: 361–384

    Article  CAS  PubMed  Google Scholar 

  • Collins S and Groudine M (1982) Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature 298: 679–681

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Landegent J and Bruckner A (1986) Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L.1.84. Hum Genet 74: 346–352

    Article  CAS  PubMed  Google Scholar 

  • Garte SJ (1993) The c-myc oncogene in tumor progression. Crit Rev Oncog 4: 435–449

    CAS  PubMed  Google Scholar 

  • Ghazvini S, Char DH, Kroll S, Waldman FM and Pinkel D (1996) Comparative genomic hybridization analysis of archival formalin fixed paraffin embedded uveal melanomas. Cancer Genet Cytogen 90: 95–101

    Article  CAS  Google Scholar 

  • Grover R, Ross DA, Richman PI, Robinson B and Wilson GD (1996) C-myc oncogene expression in human melanoma and its relationship with tumour antigenicity. Eur J Surg Oncol 22: 342–346

    Article  CAS  PubMed  Google Scholar 

  • Hopman AH, Voorter CE and Ramaekers FC (1994) Detection of genomic changes in cancer by in situ hybridization. Mol Biol Rep 19: 31–44

    Article  CAS  PubMed  Google Scholar 

  • Horsman DE, Sroka H, Rootman J and White VA (1990) Monosomy 3 and isochromosome 8q in uveal melanoma. Cancer Genet Cytogen 45: 249–253

    Article  CAS  Google Scholar 

  • Jenkins RB, Qian J, Lieber MM and Bostwick DG (1997) Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by Fluorescence in Situ Hybridization. Cancer Res 57: 524–531

    CAS  Google Scholar 

  • Kakisako K, Miyahara M, Uchino S, Adachi Y and Kitano S (1998) Prognostic significance of c-myc mRNA expression assessed by semi-quantitative RT-PCR in patients with colorectal cancer. Oncol Rep 5: 441–445

    CAS  PubMed  Google Scholar 

  • Koh HK (1991) Cutaneous melanoma. N Engl J Med 325: 171–182

    Article  CAS  PubMed  Google Scholar 

  • Lichter P, Boyle AL, Cremer T and Ward DC (1991) Analysis of genes and chromosomes by nonisotopic in situ hybridization. GATA 8: 24–35

    CAS  Google Scholar 

  • Little CD, Nau MM, Carney DN, Gazdar AF and Minna JD (1983) Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306: 194–196

    Article  CAS  PubMed  Google Scholar 

  • Masramon L, Arribas R, Tortola S, Perucho M and Peinado MA (1998) Moderate amplifications of the c-myc gene correlate with molecular and clinicopathological parameters in colorectal cancer. Brit J Cancer 99: 2349–2356

    Article  Google Scholar 

  • Meichle A, Philipp A and Eilers M (1992) The functions of Myc proteins. Biochim Biophys Acta 1114: 129–146

    CAS  PubMed  Google Scholar 

  • Osanto S, Jansen R and Vloemans M (1992) Downmodulation of c-myc expression by interferon γ and tumour necrosis factor α precedes growth arrest in human melanoma cells. Eur J Cancer 28: 1622–1627

    Article  Google Scholar 

  • Ozisik YY, Meloni AM, Altungoz O, Peier A, Karakousis C, Leong SPL and Sandberg AA (1994) Cytogenetic findings in 21 malignant melanomas. Cancer Genet Cytogen 77: 69–73

    Article  CAS  Google Scholar 

  • Pedersen MI, Bennett JW and Wang N (1986) Nonrandom chromosome structural aberrations and oncogene loci in human malignant melanoma. Cancer Genet Cytogen 20: 11–17

    Article  CAS  Google Scholar 

  • Pinkel D, Straume T and Gray JW (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci 83: 2934–2938

    Article  CAS  PubMed  Google Scholar 

  • Prescher G, Bornfeld N and Becher R (1990) Nonrandom chromosomal abnormalities in primary uveal melanoma. J Natl Cancer I 82: 1765–1769

    Article  CAS  Google Scholar 

  • Robinson JK, Rigel DS and Amonette RA (1997) Trends in sun exposure knowledge, attitudes, and behaviors: 1986–1996. J Am Acad Dermatol 37: 179–186

    Article  CAS  PubMed  Google Scholar 

  • Ross DA and Wilson GD (1998) Expression of c-myc oncoprotein represents a new prognostic marker in cutaneous melanoma. Brit J Surg 85: 46–51

    Article  CAS  PubMed  Google Scholar 

  • Schlagbauer-Wadl H, Griffioen M and von Elsas A (1999) Influence of Increased c-Myc Expression on the Growth Characteristics of Human Melanoma. J Invest Dermatol 112: 332–336

    Article  CAS  PubMed  Google Scholar 

  • Sisley K, Rennie IG, Parsons MA, Jacques R, Hammond DW, Bell SM, Potter AM and Rees RC (1997) Abnormalities of chromosomes 3 and 8 in posterior uveal melanoma correlate with prognosis. Gene Chromosome Canc 19: 22–28

    Article  CAS  Google Scholar 

  • Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronon S and Leder P (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Nat Acad Sci 79: 7837–7841

    Article  CAS  PubMed  Google Scholar 

  • Thompson EB (1998) The many roles of c-myc in apoptosis. Annu Rev Physiol 60: 575–600

    Article  CAS  PubMed  Google Scholar 

  • Visscher DW, Wallis T, Awussah S, Mohamed A and Crissman JD (1997) Evaluation of myc and chromosome 8 copy number in breast carcinoma by interphase cytogenetics. Gene Chromosome Canc 18: 1–7

    Article  CAS  Google Scholar 

  • Vogelstein B and Kinzler KW (1993) The multistep nature of cancer. Trends Genet 9: 138–141

    Article  CAS  Google Scholar 

Download references

Author information

Author notes
  1. G M Kraehn and J Utikal: G.M.K. and J.U. contributed equally to this work

Authors and Affiliations

  1. Department of Dermatology, University of Ulm, Ulm, Germany

    G M Kraehn, J Utikal, M Udart, K M Greulich, G Bezold, P Kaskel, U Leiter & R U Peter

  2. Department of Pharmacology, University of California, La Jolla, San Diego, USA

    G M Kraehn

  3. Division of Carcinogenesis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany

    K M Greulich

Authors
  1. G M Kraehn
    View author publications

    Search author on:PubMed Google Scholar

  2. J Utikal
    View author publications

    Search author on:PubMed Google Scholar

  3. M Udart
    View author publications

    Search author on:PubMed Google Scholar

  4. K M Greulich
    View author publications

    Search author on:PubMed Google Scholar

  5. G Bezold
    View author publications

    Search author on:PubMed Google Scholar

  6. P Kaskel
    View author publications

    Search author on:PubMed Google Scholar

  7. U Leiter
    View author publications

    Search author on:PubMed Google Scholar

  8. R U Peter
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Kraehn, G., Utikal, J., Udart, M. et al. Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases. Br J Cancer 84, 72–79 (2001). https://doi.org/10.1054/bjoc.2000.1535

Download citation

  • Received: 10 April 2000

  • Revised: 24 August 2000

  • Accepted: 25 August 2000

  • Published: 03 January 2001

  • Issue date: 05 January 2001

  • DOI: https://doi.org/10.1054/bjoc.2000.1535

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • c-myc
  • chromosome 8
  • fluorescence in situ hybridization
  • RT-PCR

This article is cited by

  • CircMYC Regulates Glycolysis and Cell Proliferation in Melanoma

    • Cheng Jin
    • Dake Dong
    • Meishan Piao

    Cell Biochemistry and Biophysics (2020)

  • Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma

    • Kim Wong
    • Louise van der Weyden
    • David J. Adams

    Nature Communications (2019)

  • A geometric approach to characterize the functional identity of single cells

    • Shahin Mohammadi
    • Vikram Ravindra
    • Ananth Grama

    Nature Communications (2018)

  • Discovery of potential biomarkers in human melanoma cells with different metastatic potential by metabolic and lipidomic profiling

    • Hye-Youn Kim
    • Hwanhui Lee
    • Hyung-Kyoon Choi

    Scientific Reports (2017)

  • Melanocytic nevi and melanoma: unraveling a complex relationship

    • W E Damsky
    • M Bosenberg

    Oncogene (2017)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited