Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Bisphosphonates regulate cell growth and gene expression in the UMR 106-01 clonal rat osteosarcoma cell line
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 03 April 2001

Bisphosphonates regulate cell growth and gene expression in the UMR 106-01 clonal rat osteosarcoma cell line

  • P S Mackie1,
  • J L Fisher1,
  • H Zhou2 &
  • …
  • P F M Choong1 

British Journal of Cancer volume 84, pages 951–958 (2001)Cite this article

  • 1336 Accesses

  • 124 Citations

  • 3 Altmetric

  • Metrics details

This article has been updated

Abstract

Local growth of osteosarcoma involves destruction of host bone by proteolytic mechanisms and/or host osteoclast activation. Osteoclast formation and activity are regulated by osteoblast-derived factors such as the osteoclast differentiating factor, receptor activator of NF-κB ligand (RANKL) and the inhibitor osteoprotegerin (OPG). We have investigated the in vitro effects of bisphosphonates on a clonal rat osteosarcoma cell line. The aminobisphosphonate pamidronate was added to UMR 106-01 cell cultures (10−8M to 10−4M up to 5 days). The non-aminobisphosphonate clodronate was administered for the same time periods (10−6M to 10−2M). Cell proliferation, apoptosis and mRNA expression was assessed. Both agents inhibited cell proliferation in a time- and dose-dependent manner. ELISA analysis demonstrated an increase in DNA fragmentation although there was no significant dose-related difference between the doses studied. Bisphosphonate-treated cultures had a greater subpopulation of cells exhibiting morphological changes of apoptosis. Expression of mRNA for osteopontin and RANKL was down-regulated by both agents, while the expression of mRNA for alkaline phosphatase, pro-α1(I) collagen and OPG was not altered. Out in vitro work suggests the bisphosphonates not only have direct effects on osteosarcoma cell growth and apoptosis, but also, by altering the relative expression of osteoclast-regulating factors, they may inhibit the activity of osteoclasts and their recruitment. © 2001 Cancer Research Campaign

Similar content being viewed by others

Mapping RANKL- and OPG-expressing cells in bone tissue: the bone surface cells as activators of osteoclastogenesis and promoters of the denosumab rebound effect

Article Open access 18 October 2024

The effect of cold atmospheric plasma on viability of osteoblasts and expression of RANKL and OPG genes in medium with bisphosphonates

Article Open access 06 November 2024

Mechanisms underlying the long-term and withdrawal effects of denosumab therapy on bone

Article 06 April 2023

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Adami S (1997) Bisphosphonates in prostate carcinoma. Cancer 80: 1674–1679

    Article  CAS  Google Scholar 

  • Arends MJ, Morris RG and Wyllie AH (1990) Apoptosis. The role of the endonuclease. Am J Pathol 136: 593–608

    CAS  Google Scholar 

  • Asou Y, Rittling SR, Yoshitake H, Denhardt DT and Noda M (1999) Osteopontin-deficient bone is defective in angiogenesis, osteoclast-recruitment and ectopic resorption. Proceedings from the 21st Annual Meeting of the American Society for Bone and Mineral Research,

  • Behrend EI, Craig AM, Wilson SM, Denhardt DT and Chambers AF (1994) Reduced malignancy of ras-transformed NIH 3T3 cells expressing antisense osteopontin RNA. Cancer Res 54: 832–837

    CAS  Google Scholar 

  • Behrend EI, Craig AM, Wilson SM, Denhardt DT and Chambers AF (1995) Expression of antisense osteopontin RNA in metastatic mouse fibroblasts is associated with reduced malignancy. Ann N Y Acad Sci 760: 299–301

    Article  CAS  Google Scholar 

  • Bloomfield DJ (1998) Should bisphosphonates be part of the standard therapy of patients with multiple myeloma or bone metastases from other cancers? An evidence-based review. J Clin Oncol 16: 1218–1225

    Article  CAS  Google Scholar 

  • Boissier S, Magnetto S, Frappart L, Cuzin B, Ebetino FH, Delmas PD and Clezardin P (1997) Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Cancer Res 57: 3890–3894

    CAS  Google Scholar 

  • Brown LF, Papadopoulos Sergiou A, Berse B, Manseau EJ, Tognazzi K, Perruzzi CA, Dvorak HF and Senger DR (1994) Osteopontin expression and distribution in human carcinomas. Am J Pathol 145: 610–623

    CAS  Google Scholar 

  • Butle WT (1989) The nature and significance of osteopontin. Connect Tissue Res 23: 123–136

    Article  Google Scholar 

  • Chan YL, Gutell R, Noller HF and Wool IG (1984) The nucleotide sequence of a rat 18 S ribosomal ribonucleic acid gene and a proposal for the secondary structure of 18 S ribosomal ribonucleic acid. J Biol Chem 259: 224–230

    CAS  Google Scholar 

  • Chikatsu N, Takeuchi Y, Tamura Y, Fukumoto S, Yano K, Tsuda E, Ogata E and Fujita T (2000) Interactions between cancer and bone marrow cells induce osteoclast differentiation factor expression and osteoclast-like cell formation in vitro. Biochem Biophys Res Commun 267: 632–637

    Article  CAS  Google Scholar 

  • Coleman RE and Purohit OP (1993) Osteoclast inhibition for the treatment of bone metastases. Cancer Treat Rev 19: 79–103

    Article  CAS  Google Scholar 

  • Craig AM, Nemir M, Mukherjee BB, Chambers AF and Denhardt DT (1988) Identification of the major phosphoprotein secreted by many rodent cell lines as 2ar/osteopontin: enhanced expression in H-ras-transformed 3T3 cells. Biochem Biophys Res Commun 157: 166–173

    Article  CAS  Google Scholar 

  • Denhardt DT and Guo X (1993) Osteopontin: a protein with diverse functions. Faseb J 7: 1475–1482

    Article  CAS  Google Scholar 

  • Diel IJ, Solomayer EF, Costa SD, Gollan C, Goerner R, Wallwiener D, Kaufmann M and Bastert G (1998) Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 339: 357–363

    Article  CAS  Google Scholar 

  • Dodds RA, Connor JR, James IE, Rykaczewski EL, Appelbaum E, Dul E and Gowen M (1995) Human osteoclasts, not osteoblasts, deposit osteopontin onto resorption surfaces: an in vitro and ex vivo study of remodeling bone. J Bone Miner Res 10: 1666–1680

    Article  CAS  Google Scholar 

  • Evans CE and Braidman IP (1994) Effects of two novel bisphosphonates on bone cells in vitro. Bone Miner 26: 95–107

    Article  CAS  Google Scholar 

  • Flanagan AM and Chambers TJ (1989) Dichloromethylenebisphosphonate (C12MBP) inhibits bone resorption through injury to osteoclasts that resorb C12MBP-coated bone. Bone Miner 6: 33–43

    Article  CAS  Google Scholar 

  • Fleisch H (1993) New bisphosphonates in osteoporosis. Osteoporos Int 3 Suppl 2: S15–22

    Article  CAS  Google Scholar 

  • Galasko CS (1976) Mechanisms of bone destruction in the development of skeletal metastases. Nature 263: 507–508

    Article  CAS  Google Scholar 

  • García Moreno C, Serrano S, Nacher M, Farré M, A, DI, Mariñoso, M, A, DI Carbonell J, Mellibovsky L, Nogués X, Ballester J and Aubía J (1998) Effect of alendronate on cultured normal human osteoblasts. Bone 22: 233–239

    Article  Google Scholar 

  • Gardner HA, Berse B and Senger DR (1994) Specific reduction in osteopontin synthesis by antisense RNA inhibits the tumorigenicity of transformed Rat 1 fibroblasts. Oncogene 9: 2321–2326

    CAS  Google Scholar 

  • Goziotis A, Sukhu B, Torontali M, Dowhaniuk M and Tenenbaum HC (1995) Effects of bisphosphonates APD and HEBP on bone metabolism in vitro. Bone 16: 317S–327S

    Article  CAS  Google Scholar 

  • Helfrich MH, Nesbitt SA, Dorey EL and Horton MA (1992) Rat osteoclasts adhere to a wide range of RGD (Arg-Gly-Asp) peptide-containing proteins, including the bone sialoproteins and fibronectin, via a beta 3 integrin. J Bone Miner Res 7: 335–343

    Article  CAS  Google Scholar 

  • Horwood NJ, Elliott J, Martin TJ and Gillespie MT (1998) Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology 139: 4743–4746

    Article  CAS  Google Scholar 

  • Jilka RL, Weinstein RS, Bellido T, Parfitt AM and Manolagas SC (1998) Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res 13: 793–802

    Article  CAS  Google Scholar 

  • Kartsogiannis V, Zhou H, Horwood NJ, Thomas RJ, Hards DK, Quinn JMW, Niforas P, Ng KW, Martin TJ and Gillespie MT (1999) Localization of RANKL (Receptor Activator of NFKB Ligand) mRNA and Protein in Skeletal and Extraskeletal Tissues. Bone 25: 525–534

    Article  CAS  Google Scholar 

  • Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G and Rogers MJ (1998) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13: 581–589

    Article  CAS  Google Scholar 

  • Majeska RJ, Port M and Einhorn TA (1993) Attachment to extracellular matrix molecules by cells differing in the expression of osteoblastic traits. J Bone Miner Res 8: 277–289

    Article  CAS  Google Scholar 

  • Martin TJ, Ingleton PM, Underwood JC, Michelangeli VP, Hunt NH and Melick RA (1976) Parathyroid hormone-responsive adenylate cyclase in induced transplantable osteogenic rat sarcoma. Nature 260: 436–438

    Article  CAS  Google Scholar 

  • Merry K, Dodds R, Littlewood A and Gowen M (1993) Expression of osteopontin mRNA by osteoclasts and osteoblasts in modelling adult human bone. J Cell Sci 104: 1013–1020

    CAS  Google Scholar 

  • Oldberg A, Franzén A and Heinegård D (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci USA 83: 8819–8823

    Article  CAS  Google Scholar 

  • Orr FW, Sanchez-Sweatman OH, Kostenuik P and Singh G (1995) Tumor-bone interactions in skeletal metastasis. Clin Orthop, 19–33

  • Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC and Bellido T (1999) Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 104: 1363–1374

    Article  CAS  Google Scholar 

  • Reinholt FP, Hultenby K, Oldberg A and Heinegard D (1990) Osteopontin – a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA 87: 4473–4475

    Article  CAS  Google Scholar 

  • Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J and Frith JC (2000) Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88: 2989–2994

    Article  Google Scholar 

  • Ross FP, Chappel J, Alvarez JI, Sander D, Butler WT, Farach-Carson MC, Mintz KA, Robey PG, Teitelbaum SL and Cheresh DA (1993) Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone resorption. J Biol Chem 268: 9901–9907.

    CAS  Google Scholar 

  • Russell RG, Rogers MJ, Frith JC, Luckman SP, Coxon FP, Benford HL, Croucher PI, Shipman C and Fleisch HA (1999) The pharmacology of bisphosphonates and new insights into their mechanisms of action. J Bone Miner Res 14: 53–65

    Article  CAS  Google Scholar 

  • Sahni M, Guenther HL, Fleisch H, Collin P and Martin TJ (1993) Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest 91: 2004–2011

    Article  CAS  Google Scholar 

  • Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson DD, Golub E and Rodan GA (1991) Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest 88: 2095–2105

    Article  CAS  Google Scholar 

  • Senaratne SG, Pirianov G, Mansi JL, Arnett TR and Colston KW (2000) Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer 82: 1459–1468

    Article  CAS  Google Scholar 

  • Shipman CM, Rogers MJ, Apperley JF, Russell RG and Croucher PI (1997) Bisphosphonates induce apoptosis in human myeloma cell lines: a novel anti-tumour activity. Br J Haematol 98: 665–672

    Article  CAS  Google Scholar 

  • Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P and Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309–319

    Article  CAS  Google Scholar 

  • Sodek J, Chen J, Nagata T, Kasugai S, Todescan R Jr, Li IW and Kim RH (1995) Regulation of osteopontin expression in osteoblasts. Ann N Y Acad Sci 760: 223–241

    Article  CAS  Google Scholar 

  • Tan PL, Katz JM, Ames R, Caughey DE, Gray HD, Ibbertson HK and Watson JD (1988) Aminobisphosphonate inhibition of interleukin-1-induced bone resorption in mouse calvariae. Arthritis Rheum 31: 762–768

    Article  CAS  Google Scholar 

  • Thiébaud D, Leyvraz S, von Fliedner V, Perey L, Cornu P, Thiébaud S and Burckhardt P (1991) Treatment of bone metastases from breast cancer and myeloma with pamidronate. Eur J Cancer 27: 37–41

    Article  Google Scholar 

  • van der Pluijm G, Vloedgraven H, van Beek E, van der Wee- Pals L, C Lö and Papapoulos S (1996) Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest 98: 698–705

    Article  CAS  Google Scholar 

  • Vitté C, Fleisch H and Guenther HL (1996) Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclast-mediated resorption. Endocrinology 137: 2324–2333

    Article  Google Scholar 

  • Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS, 3rd Frankel WN, Lee SY and Choi Y (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272: 25190–25194

    Article  CAS  Google Scholar 

  • Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, Kanno T, Murakami A, Tsuda E, Morinaga T and Higashio K (1998a) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139: 1329–1337

    Article  Google Scholar 

  • Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N and Suda T (1998b) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95: 3597–3602

    Article  CAS  Google Scholar 

  • Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD and Nishikawa S (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345: 442–444

    Article  CAS  Google Scholar 

  • Yu X, Scholler J and Foged NT (1996) Interaction between effects of parathyroid hormone and bisphosphonate on regulation of osteoclast activity by the osteoblast-like cell line UMR-106. Bone 19: 339–345

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Orthopedics St. Vincent's Hospital, Fitzroy, Melbourne, 3065, Victoria, Australia

    P S Mackie, J L Fisher & P F M Choong

  2. Department of Medicine, St. Vincent's Hospital, Fitzroy, Melbourne, 3065, Victoria, Australia

    H Zhou

Authors
  1. P S Mackie
    View author publications

    Search author on:PubMed Google Scholar

  2. J L Fisher
    View author publications

    Search author on:PubMed Google Scholar

  3. H Zhou
    View author publications

    Search author on:PubMed Google Scholar

  4. P F M Choong
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Mackie, P., Fisher, J., Zhou, H. et al. Bisphosphonates regulate cell growth and gene expression in the UMR 106-01 clonal rat osteosarcoma cell line. Br J Cancer 84, 951–958 (2001). https://doi.org/10.1054/bjoc.2000.1679

Download citation

  • Received: 17 August 2000

  • Revised: 03 January 2001

  • Accepted: 04 January 2001

  • Published: 03 April 2001

  • Issue date: 06 April 2001

  • DOI: https://doi.org/10.1054/bjoc.2000.1679

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • osteosarcoma
  • bisphosphonates
  • apoptosis
  • osteopontin
  • RANKL
  • osteoprotegerin

This article is cited by

  • The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts

    • Anureet Kaur Shah
    • Hoda Yeganehjoo

    Molecular and Cellular Biochemistry (2019)

  • Bisphosphonates hinder osteoblastic/osteoclastic differentiation in the maxillary sinus mucosa-derived stem cells

    • Jun Zhang
    • Jaesuh Park
    • Eun-Cheol Kim

    Clinical Oral Investigations (2018)

  • Effect of low-level laser therapy on bisphosphonate-treated osteoblasts

    • Sang-Hun Shin
    • Ki-Hyun Kim
    • Cheol-Hun Kim

    Maxillofacial Plastic and Reconstructive Surgery (2016)

  • Role of osteopontin in osteosarcoma

    • Yu-sheng Li
    • Zhen-han Deng
    • Guang-hua Lei

    Medical Oncology (2015)

  • Effect of compressive loading and incubation with clodronate on the RANKL/OPG system of human osteoblasts

    • S. Grimm
    • C. Walter
    • C. Jacobs

    Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie (2015)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited