Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
MDR1 causes resistance to the antitumour drug miltefosine
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 15 May 2001

MDR1 causes resistance to the antitumour drug miltefosine

  • M Rybczynska1,
  • R Liu2,
  • P Lu2,
  • F J Sharom2,
  • E Steinfels3,
  • A Di Pietro3,
  • M Spitaler1,
  • H Grunicke1 &
  • …
  • J Hofmann1 

British Journal of Cancer volume 84, pages 1405–1411 (2001)Cite this article

  • 984 Accesses

  • 33 Citations

  • Metrics details

This article has been updated

Abstract

Miltefosine (hexadecylphosphocholine) is used for topical treatment of breast cancers. It has been shown previously that a high percentage of breast carcinomas express MDR1 or MRP. We investigated the sensitivity of MDR1-expressing cells to treatment with miltefosine. We show that cells overexpressing MDR1 (NCI/ADR-RES, KB-8-5, KB-C1, CCRF/VCR1000, CCRF/ADR5000) were less sensitive to miltefosine treatment when compared to the sensitive parental cell lines. HeLa cells transfected with MDR1 exhibited resistance to the compound, indicating that expression of this gene is sufficient to reduce the sensitivity to miltefosine. The resistance of MDR1-expressing cells to miltefosine was less pronounced than that to adriamycin or vinblastine. Expression of MDR2 did not correlate with the resistance to miltefosine. As shown by a fluorescence quenching assay using MIANS-labelled P-glycoprotein (PGP), miltefosine bound to PGP with a Kd of approximately 7 μM and inhibited PGP-ATPase activity with an IC50 of approximately 35 μM. Verapamil was not able to reverse the resistance to miltefosine. Concentrations of miltefosine up to approximately 60 μM stimulated, whereas higher concentrations inhibited the transport of [3H]-colchicine with an IC50 of approximately 297 μM. Binding studies indicated that miltefosine seems to interact with the transmembrane domain and not the cytosolic nucleotide-binding domain of PGP. These data indicate that expression of MDR1 may reduce the response to miltefosine in patients and that this compound interacts with PGP in a manner different from a number of other substrates. © 2001 Cancer Research Campaign

Similar content being viewed by others

METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner

Article Open access 08 January 2021

Synthesis and effect of 4-acetylphenylamine-based imidazole derivatives on migration and growth of 3D cultures of breast, prostate and brain cancer cells

Article Open access 14 November 2024

A novel synthetic microtubule inhibitor exerts antiproliferative effects in multidrug resistant cancer cells and cancer stem cells

Article Open access 24 May 2021

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Abulrob AG and Gumbleton M (1999) Transport of phosphatidylcholine in MDR3-negative epithelial cell lines via drug-induced MDR1 P-glycoprotein. Biochem Biophys Res Commun 262: 121–126

    Article  CAS  Google Scholar 

  • Akiyama S, Fojo A, Hanover JA, Pastan I and Gottesman MM (1985) Isolation and genetic characterization of human KB cell lines resistant to multiple drugs. Somatic Cell Mol Genet 11: 117–126

    Article  CAS  Google Scholar 

  • Berdel WE (1991) Membrane-interactive lipids as experimental anticancer drugs. Br J Cancer 64: 208–211

    Article  CAS  Google Scholar 

  • Brachwitz H and Vollgraf C (1995) Analogs of alkyllysophospholipids: chemistry, effects on the molecular level and their consequences for normal and malignant cells. Pharmacol Ther 66: 39–82

    Article  CAS  Google Scholar 

  • Cardarelli CO, Aksentijevich I, Pastan I and Gottesman MM (1995) Differential effects of P-glycoprotein inhibitors on NIH3T3 cells transfected with wild-type (G185) or mutant (V185) multidrug transporters. Cancer Res 55: 1086–1091

    CAS  PubMed  Google Scholar 

  • Choi K, Chen C, Kriegler M and Roninson IB (1988) An altered pattern of cross-resistance in multidrug resistant human cells results from spontaneous mutations in the mdr1 (P-glycoprotein) gene. Cell 53: 519–529

    Article  CAS  Google Scholar 

  • Conseil G, Baubichon-Cortay H, Dayan G, Jault J-M, Barron D and Di Pietro A (1998) Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP-and steroid-binding sites on mouse P-glycoprotein. Proc Natl Acad Sci USA 95: 9831–9836

    Article  CAS  Google Scholar 

  • Doige CA and Sharom FJ (1992) Transport properties of P-glycoprotein in plasma membrane vesicles from multidrug-resistant Chinese hamster ovary cells. Biochim Biophys Acta 1109: 161–171

    Article  CAS  Google Scholar 

  • Doige CA, Yu X and Sharom FJ (1992) ATPase activity of partially purified P-glycoprotein from multidrug-resistant Chinese hamster ovary cells. Biochim Biophys Acta 1109: 149–160

    Article  CAS  Google Scholar 

  • Doyle AL, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK and Ross DG (1998) A multidrug resistance transporter from MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95: 15665–15670

    Article  CAS  Google Scholar 

  • Fu D, Shi Z and Wang Y (1999) Bcl-2 plays a key role instead of mdr1 in the resistance to hexadecylphosphocholine in human epidermoid tumor cell line KB. Cancer Lett 142: 147–153

    Article  CAS  Google Scholar 

  • Goldie JH and Coldman AJ (1984) The genetic origin of drug resistance in neoplasms: implications for systemic therapy. Cancer Res 44: 3643–3653

    CAS  PubMed  Google Scholar 

  • Gottesman MM and Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62: 385–427

    Article  CAS  Google Scholar 

  • Hilgard P, Klenner T, Stekar J and Unger C (1993) Alkylphosphocholines: a new class of membrane-active anticancer agents. Cancer Chemother Pharmacol 32: 90–95

    Article  CAS  Google Scholar 

  • Himmelmann AW, Danhauser-Riedl S, Steinhauser G, Busch R, Modest EJ, Noseda A, Rastetter J, Vogler WR and Berdel WE (1990) Cross-resistance pattern of cell lines selected for resistance towards different cytotoxic drugs to membrane-toxic phospholipids in vitro. Cancer Chemother Pharmacol 26: 437–443

    Article  CAS  Google Scholar 

  • Hofmann J, Utz I, Spitaler M, Hofer S, Rybczynska M, Beck WT, Herrmann DBJ and Grunicke H (1997) Resistance to the new anti-cancer phospholipid ilmofosine (BM 41 440). Br J Cancer 76: 862–869

    Article  CAS  Google Scholar 

  • Kane SE, Reinhard DH, Fordis MC, Pastan I and Gottesman MM (1989) A new vector using the human multidrug resistance gene as a selectable marker enables overexpression of foreign genes in eukaryotic cells. Gene 84: 439–446

    Article  CAS  Google Scholar 

  • Kim CH, Gollapudi S, Lee T and Gupta S (1997) Altered expression of the genes regulating apoptosis in multidrug resistant human myeloid leukemia cell lines overexpressing MDR1 or MRP gene. Int J Oncol 11: 945–950

    CAS  PubMed  Google Scholar 

  • Kimmig A, Gekeler V, Neumann M, Frese G, Handgretinger R, Kardos G, Diddens H and Niethammer D (1990) Susceptibility of multidrug-resistant human leukemia cell lines to human interleukin 2-activated killer cells. Cancer Res 50: 6793–6799

    CAS  PubMed  Google Scholar 

  • Lautier D, Canitrot Y, Deeley RG and Cole SPC (1996) Multidrug resistance mediated by the multidrug resistance protein (MRP) gene. Biochem Pharmacol 52: 967–977

    Article  CAS  Google Scholar 

  • Ling V and Thompson LH (1974) Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol 83: 103–116

    Article  CAS  Google Scholar 

  • Liu R and Sharom FJ (1996) Site-directed fluorescence labeling of P-glycoprotein on cysteine residues in the nucleotide binding domains. Biochemistry 35: 11865–11873

    Article  CAS  Google Scholar 

  • Mosman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55–63

    Article  Google Scholar 

  • Noonan KE, Beck C, Holzmayer TA, Chin JE, Wunder JS, Andrulis IL, Gazdar AF, Willman CL, Griffith B, Von Hoff DD and Roninson IB (1990) Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc Natl Acad Sci USA 87: 7160–7164

    Article  CAS  Google Scholar 

  • Romsicki Y, Sharom FJ (2001) Phospholipid flippase activity of the reconstituted P-glycoprotein multidrug transporter. Biochemistry (accepted)

    Article  CAS  Google Scholar 

  • Ruetz S and Gros P (1994) Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell 77: 1071–1081

    Article  CAS  Google Scholar 

  • Safa AR, Stern RK, Choi K, Agresti M, Tamai I, Mehta ND and Roninson IB (1990) Molecular basis of preferential resistance to colchicine in multidrug-resistant human cells conferred by Gly-185-Val-185 substitution in P-glycoprotein. Proc Natl Acad Sci USA 87: 7225–7229

    Article  CAS  Google Scholar 

  • Scheffer GL, Winjgaard PLJ, Flens MJ, Izquierdo MA, Slovak ML, Pinedo HM, Meijer CJLM, Clevers HC and Scheper RJ (1995) The drug resistance-related protein LRP is the human major vault protein. Nature Med 1: 578–582

    Article  CAS  Google Scholar 

  • Shapiro AB and Ling V (1997) Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur J Biochem 250: 130–137

    Article  CAS  Google Scholar 

  • Shapiro AB, Fox K, Lam P and Ling V (1999) Stimulation of P-glycoprotein-mediated drug transport by prazosin and progesterone – Evidence for a third drug-binding site. Eur J Biochem 259: 841–850

    Article  CAS  Google Scholar 

  • Sharom FJ (1997) The P-glycoprotein efflux pump: how does it transport drugs?. J Membr Biol 160: 161–175

    Article  CAS  Google Scholar 

  • Sharom FJ, Yu X and Doige CA (1993) Functional reconstitution of drug transport and ATPase activity in proteoliposomes containing partially purified P-glycoprotein. J Biol Chem 268: 24197–24202

    CAS  PubMed  Google Scholar 

  • Sharom FJ, DiDiodato G, Yu X and Ashbourne KJ (1995) Interaction of the P-glycoprotein multidrug transporter with peptides and ionophores. J Biol Chem 270: 10334–10341

    Article  CAS  Google Scholar 

  • Sharom FJ, Yu X, DiDiodato G and Chu JWK (1996) Synthetic hydrophobic peptides are substrate for P-glycoprotein and stimulate drug transport. Biochem J 320: 421–428

    Article  CAS  Google Scholar 

  • Sharom FJ, Liu R and Romsicki Y (1998a) Spectroscopic and biophysical approaches for studying the structure and function of the P-glycoprotein multidrug transporter. Biochem Cell Biol 76: 695–708

    Article  CAS  Google Scholar 

  • Sharom FJ, Lu P, Liu R and Yu X (1998b) Linear and cyclic peptides as substrates and modulators of P-glycoprotein: peptide binding and effects on drug transport and accumulation. Biochem J 333: 621–630

    Article  CAS  Google Scholar 

  • Sharom FJ, Liu R, Romsicki Y and Lu P (1999) Insights into the structure and substrate interactions of the P-glycoprotein multidrug transporter from spectroscopic studies. Biochim Biophys Acta 1461: 327–345

    Article  CAS  Google Scholar 

  • Smit JJ, Schinkel AH, Oude Elferink RP, Groen AK, Wagenaar E, van Deemter L, Mol CA, Ottenhoff R, van der Lugt NM, van Roon MA, van der Valk MA, Offerhaus GJA, Berns AJM and Borst P (1993) Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75: 451–462

    Article  CAS  Google Scholar 

  • Smyth MJ, Drasovskis E, Sutton VR and Johnstone RW (1998) The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci USA 95: 7024–7029

    Article  CAS  Google Scholar 

  • Spitaler M, Utz I, Hilbe W, Hofmann J and Grunicke HH (1998) PKC-independent modulation of multidrug resistance in cells with mutant (V185) but not wild-type (G185) P-glycoprotein by bryostatin 1. Biochem Pharmacol 56: 861–869

    Article  CAS  Google Scholar 

  • Thorgeirsson SS, Silverman JA, Gant TW and Marino PA (1991) Multidrug resistance gene family and chemical carcinogenesis. Pharmacol Ther 49: 283–292

    Article  CAS  Google Scholar 

  • Trock B, Leonessa JF and Clarke R (1997) Multidrug resistance in breast cancer: a meta-analysis of MDR1/Pgp170 expression and its possible functional significance. J Natl Cancer Inst 89: 917–931

    Article  CAS  Google Scholar 

  • Vo QD and Gruol DJ (1999) Identification of P-glycoprotein mutations causing a loss of steroid recognition and transport. J Biol Chem 274: 20318–20327

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Medical Chemistry and Biochemistry, University of Innsbruck, Fritz-Pregl-Str. 3, Innsbruck, A-6020, Austria

    M Rybczynska, M Spitaler, H Grunicke & J Hofmann

  2. Department of Chemistry and Biochemistry, University of Guelph, 50 Stone Road East, Guelph, N1G 2W1, ON, Canada

    R Liu, P Lu & F J Sharom

  3. Institute of Protein Biology and Chemistry, UMR-CNRS 5086, Passage du Vercors 7, Lyon, F-69367, France

    E Steinfels & A Di Pietro

Authors
  1. M Rybczynska
    View author publications

    Search author on:PubMed Google Scholar

  2. R Liu
    View author publications

    Search author on:PubMed Google Scholar

  3. P Lu
    View author publications

    Search author on:PubMed Google Scholar

  4. F J Sharom
    View author publications

    Search author on:PubMed Google Scholar

  5. E Steinfels
    View author publications

    Search author on:PubMed Google Scholar

  6. A Di Pietro
    View author publications

    Search author on:PubMed Google Scholar

  7. M Spitaler
    View author publications

    Search author on:PubMed Google Scholar

  8. H Grunicke
    View author publications

    Search author on:PubMed Google Scholar

  9. J Hofmann
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Rybczynska, M., Liu, R., Lu, P. et al. MDR1 causes resistance to the antitumour drug miltefosine. Br J Cancer 84, 1405–1411 (2001). https://doi.org/10.1054/bjoc.2001.1776

Download citation

  • Received: 20 March 2000

  • Revised: 13 February 2001

  • Accepted: 15 February 2001

  • Published: 15 May 2001

  • Issue date: 18 May 2001

  • DOI: https://doi.org/10.1054/bjoc.2001.1776

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • miltefosine
  • hexadecylphosphocholine
  • multidrug resistance
  • MDR1

This article is cited by

  • Thermodynamic behavior of breast cancer cell lines after miltefosine and cisplatin treatment

    • Svetla Todinova
    • Biliana Nikolova
    • Stefka G. Taneva

    Journal of Thermal Analysis and Calorimetry (2022)

  • Intestinal Absorption of Miltefosine: Contribution of Passive Paracellular Transport

    • Cécile Ménez
    • Marion Buyse
    • Gillian Barratt

    Pharmaceutical Research (2007)

  • New Insights into the Drug Binding, Transport and Lipid Flippase Activities of the P-Glycoprotein Multidrug Transporter

    • Frances J. Sharom
    • Miguel R. Lugo
    • Paul D. W. Eckford

    Journal of Bioenergetics and Biomembranes (2005)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited