Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Administration route-dependent vaccine efficiency of murine dendritic cells pulsed with antigens
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 29 May 2001

Administration route-dependent vaccine efficiency of murine dendritic cells pulsed with antigens

  • N Okada1,
  • M Tsujino1,
  • Y Hagiwara1,
  • A Tada1,
  • Y Tamura1,
  • K Mori1,
  • T Saito1,
  • S Nakagawa2,
  • T Mayumi2,
  • T Fujita1 &
  • …
  • A Yamamoto1 

British Journal of Cancer volume 84, pages 1564–1570 (2001)Cite this article

  • 4655 Accesses

  • 75 Citations

  • Metrics details

This article has been updated

Abstract

 Dendritic cells (DCs) loaded with tumour antigens have been successfully used to induce protective tumour immunity in murine models and human trials. However, it is still unclear which DC administration route elicits a superior therapeutic effect. Herein, we investigated the vaccine efficiency of DC2.4 cells, a murine dendritic cell line, pulsed with ovalbumin (OVA) in the murine E.G7-OVA tumour model after immunization via various routes. After a single vaccination using 1 × 106 OVA-pulsed DC2.4 cells, tumour was completely rejected in the intradermally (i.d.; three of four mice), subcutaneously (s.c.; three of four mice), and intraperitoneally (i.p.; one of four mice) immunized groups. Double vaccinations enhanced the anti-tumour effect in all groups except the intravenous (i.v.) group, which failed to achieve complete rejection. The anti-tumour efficacy of each immunization route was correlated with the OVA-specific cytotoxic T lymphocyte (CTL) activity evaluated on day 7 post-vaccination. Furthermore, the accumulation of DC2.4 cells in the regional lymph nodes was detected only in the i.d.-and s.c.-injected groups. These results demonstrate that the administration route of antigen-loaded DCs affects the migration of DCs to lymphoid tissues and the magnitude of antigen-specific CTL response. Furthermore, the immunization route affects vaccine efficiency. © 2001 Cancer Research Campaign http://www.bjcancer.com

Similar content being viewed by others

Ex vivo dendritic cell-based (DC) vaccine pulsed with a low dose of liposomal antigen and CpG-ODN improved PD-1 blockade immunotherapy

Article Open access 19 July 2021

Dendritic cell maturation in cancer

Article 07 February 2025

CD8α+ dendritic cells potentiate antitumor and immune activities against murine ovarian cancers

Article Open access 03 January 2023

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Alters SE, Gadea JR, Sorich M, O'Donoghue G, Talib S and Philip R (1998) Dendritic cells pulsed with CEA peptide induce CEA-specific CTL with restricted TCR repertoire. J Immunother 21: 17–26

    Article  CAS  Google Scholar 

  • Arthur JF, Butterfield LH, Roth MD, Bui LA, Kiertscher SM, Lau R, Dubinett S, Glaspy J, McBride WH and Economou JS (1997) A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther 4: 17–25

    CAS  PubMed  Google Scholar 

  • Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD and Gilboa E (1997) Bone marrow-generated dendritic cells pulsed with tumour extracts or tumour RNA induce antitumour immunity against central nervous system tumours. J Exp Med 186: 1177–1182

    Article  CAS  Google Scholar 

  • Austyn JM, Kupiec-Weglinski JW, Hankins DF and Morris PJ (1988) Migration patterns of dendritic cells in the mouse. Homing to T cell-dependent areas of spleen, and binding within marginal zone. J Exp Med 167: 646–651

    Article  CAS  Google Scholar 

  • Banchereau J and Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252

    Article  CAS  Google Scholar 

  • Bernhard H, Disis ML, Heimfeld S, Hand S, Gralow JR and Cheever MA (1995) Generation of immunostimulatory dendritic cells from human CD34+ hematopoietic progenitor cells of the bone marrow and peripheral blood. Cancer Res 55: 1099–1104

    CAS  PubMed  Google Scholar 

  • Brossart P, Grunebach F, Stuhler G, Reichardt VL, Mohle R, Kanz L and Brugger W (1998) Generation of functional human dendritic cells from adherent peripheral blood monocytes by CD40 ligation in the absence of granulocyte-macrophage colony-stimulating factor. Blood 92: 4238–4247

    CAS  PubMed  Google Scholar 

  • Celluzzi CM, Mayordomo JI, Storkus WJ, Lotze MT and Falo, Jr LD (1996) Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumour immunity. J Exp Med 183: 283–287

    Article  CAS  Google Scholar 

  • Cikes M, Friberg, Jr S and Klein G (1973) Progressive loss of H-2 antigens with concomitant increase of cell-surface antigen(s) determined by Moloney leukemia virus in cultured murine lymphomas. J Natl Cancer Inst 50: 347–362

    Article  CAS  Google Scholar 

  • Eggert AA, Schreurs MW, Boerman OC, Oyen WJ, de Boer AJ, Punt CJ, Figdor CG and Adema GJ (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 59: 3340–3345

    CAS  PubMed  Google Scholar 

  • Fallarino F, Uyttenhove C, Boon T and Gajewski TF (1999) Improved efficacy of dendritic cell vaccines and successful immunization with tumour antigen peptide-pulsed peripheral blood mononuclear cells by coadministration of recombinant murine interleukin-12. Int J Cancer 80: 324–333

    Article  CAS  Google Scholar 

  • Fearnley DB, McLellan AD, Mannering SI, Hock BD and Hart DN (1997) Isolation of human blood dendritic cells using the CMRF-44 monoclonal antibody: implications for studies on antigen-presenting cell function and immunotherapy. Blood 89: 3708–3716

    CAS  PubMed  Google Scholar 

  • Gong J, Chen D, Kashiwaba M and Kufe D (1997) Induction of antitumour activity by immunization with fusions of dendritic and carcinoma cells. Nat Med 3: 558–561

    Article  CAS  Google Scholar 

  • Harding CV (1994) Techniques for studying phagocytic processing of bacteria for class I or II MHC-restricted antigen recognition by T lymphocytes. Methods Cell Biol 45: 313–326

    Article  CAS  Google Scholar 

  • Hayashi A, Nakanishi T, Kunisawa J, Kondoh M, Imazu S, Tsutsumi Y, Tanaka K, Fujiwara H, Hamaoka T and Mayumi T (1999) A novel vaccine delivery system using immunopotentiating fusogenic liposomes. Biochem Biophys Res Commun 261: 824–828

    Article  CAS  Google Scholar 

  • Henkart PA (1994) Lymphocyte-mediated cytotoxicity: two pathways and multiple effector molecules. Immunity 1: 343–346

    Article  CAS  Google Scholar 

  • Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG and Levy R (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2: 52–58

    Article  CAS  Google Scholar 

  • Janik P, Briand P and Hartmann NR (1975) The effect of estrone-progesterone treatment on cell proliferation kinetics of hormone-dependent GR mouse mammary tumours. Cancer Res 35: 3698–3704

    CAS  PubMed  Google Scholar 

  • Kronenberg M, Siu G, Hood LE and Shastri N (1986) The molecular genetics of the T-cell antigen receptor and T-cell antigen recognition. Annu Rev Immunol 4: 529–591

    Article  CAS  Google Scholar 

  • Lappin MB, Weiss JM, Delattre V, Mai B, Dittmar H, Maier C, Manke K, Grabbe S, Martin S and Simon JC (1999) Analysis of mouse dendritic cell migration in vivo upon subcutaneous and intravenous injection. Immunology 98: 181–188

    Article  CAS  Google Scholar 

  • Lodge PA, Jones LA, Bader RA, Murphy GP and Salgaller ML (2000) Dendritic cell-based immunotherapy of prostate cancer: immune monitoring of a phase II clinical trial. Cancer Res 60: 829–833

    CAS  PubMed  Google Scholar 

  • Ludewig B, Ochsenbein AF, Odermatt B, Paulin D, Hengartner H and Zinkernagel RM (2000) Immunotherapy with dendritic cells directed against tumour antigens shared with normal host cells results in severe autoimmune disease. J Exp Med 191: 795–803

    Article  CAS  Google Scholar 

  • Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N and Schuler G (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223: 77–92

    Article  CAS  Google Scholar 

  • Machy P, Serre K and Leserman L (2000) Class I-restricted presentation of exogenous antigen acquired by Fcgamma receptor-mediated endocytosis is regulated in dendritic cells. Eur J Immunol 30: 848–857

    Article  CAS  Google Scholar 

  • Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD, Melief CJ, Ildstad ST, Kast WM, Deleo AB and Lotze MT (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1: 1297–1302

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55–63

    Article  CAS  Google Scholar 

  • Muller G, Muller A, Jonuleit H, Steinbrink K, Szalma C, Paragnik L, Lingnau K, Schmidt E, Knop J and Enk AH (2000) Fetal calf serum-free generation of functionally active murine dendritic cells suitable for in vivo therapeutic approaches. J Invest Dermatol 114: 143–149

    Google Scholar 

  • Nair S, Zhou F, Reddy R, Huang L and Rouse BT (1992) Soluble proteins delivered to dendritic cells via pH-sensitive liposomes induce primary cytotoxic T lymphocyte responses in vitro. J Exp Med 175: 609–612

    Article  CAS  Google Scholar 

  • Nair SK, Snyder D, Rouse BT and Gilboa E (1997) Regression of tumours in mice vaccinated with professional antigen-presenting cells pulsed with tumour extracts. Int J Cancer 70: 706–715

    Article  CAS  Google Scholar 

  • Nakanishi T, Hayashi A, Kunisawa J, Tsutsumi Y, Tanaka K, Yashiro-Ohtani Y, Nakanishi M, Fujiwara H, Hamaoka T and Mayumi T (2000) Fusogenic liposomes efficiently deliver exogenous antigen through the cytoplasm into the MHC class I processing pathway. Eur J Immunol 30: 1740–1747

    Article  CAS  Google Scholar 

  • Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G and Schadendorf D (1998) Vaccination of melanoma patients with peptide-or tumour lysate-pulsed dendritic cells. Nat Med 4: 328–332

    Article  CAS  Google Scholar 

  • Norbury CC, Chambers BJ, Prescott AR, Ljunggren HG and Watts C (1997) Constitutive macropinocytosis allows TAP-dependent major histocompatibility complex class I presentation of exogenous soluble antigen by bone marrow-derived dendritic cells. Eur J Immunol 27: 280–288

    Article  CAS  Google Scholar 

  • Paglia P, Chiodoni C, Rodolfo M and Colombo MP (1996) Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumour antigen in vivo. J Exp Med 183: 317–322

    Article  CAS  Google Scholar 

  • Philip R, Alters SE, Brunette E, Ashton J, Gadea J, Yau J, Lebkowski J and Philip M (2000) Dendritic cells loaded with MART-1 peptide or infected with adenoviral construct are functionally equivalent in the induction of tumour-specific cytotoxic T lymphocyte responses in patients with melanoma. J Immunother 23: 168–176

    Article  CAS  Google Scholar 

  • Rock KL, Rothstein L and Gamble S (1990) Generation of class I MHC-restricted T-T hybridomas. J Immunol 145: 804–811

    CAS  PubMed  Google Scholar 

  • Rock KL (1996) A new foreign policy: MHC class I molecules monitor the outside world. Immunol Today 17: 131–137

    Article  CAS  Google Scholar 

  • Rodriguez A, Regnault A, Kleijmeer M, Ricciardi-Castagnoli P and Amigorena S (1999) Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol 1: 362–368

    Article  CAS  Google Scholar 

  • Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM and Schuler G (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180: 83–93

    Article  CAS  Google Scholar 

  • Roskrow MA, Dilloo D, Suzuki N, Zhong W, Rooney CM and Brenner MK (1999) Autoimmune disease induced by dendritic cell immunization against leukemia. Leuk Res 23: 549–557

    Article  CAS  Google Scholar 

  • Shen Z, Reznikoff G, Dranoff G and Rock KL (1997) Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J Immunol 158: 2723–2730

    CAS  PubMed  Google Scholar 

  • Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9: 271–296

    Article  CAS  Google Scholar 

  • Tillman BW, de Gruijl TD, Luykx-de Bakker SA, Scheper RJ, Pinedo HM, Curiel TJ, Gerritsen WR and Curiel DT (1999) Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J Immunol 162: 6378–6383

    CAS  PubMed  Google Scholar 

  • Volgmann T, Klein-Struckmeier A and Mohr H (1989) A fluorescence-based assay for quantitation of lymphokine-activated killer cell activity. J Immunol Methods 119: 45–51

    Article  CAS  Google Scholar 

  • Wong C, Morse M and Nair SK (1998) Induction of primary, human antigen-specific cytotoxic T lymphocytes in vitro using dendritic cells pulsed with peptides. J Immunother 21: 32–40

    Article  CAS  Google Scholar 

  • Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G and Amigorena S (1998) Eradication of established murine tumours using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4: 594–600

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, 607-8414, Kyoto, Japan

    N Okada, M Tsujino, Y Hagiwara, A Tada, Y Tamura, K Mori, T Saito, T Fujita & A Yamamoto

  2. Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan

    S Nakagawa & T Mayumi

Authors
  1. N Okada
    View author publications

    Search author on:PubMed Google Scholar

  2. M Tsujino
    View author publications

    Search author on:PubMed Google Scholar

  3. Y Hagiwara
    View author publications

    Search author on:PubMed Google Scholar

  4. A Tada
    View author publications

    Search author on:PubMed Google Scholar

  5. Y Tamura
    View author publications

    Search author on:PubMed Google Scholar

  6. K Mori
    View author publications

    Search author on:PubMed Google Scholar

  7. T Saito
    View author publications

    Search author on:PubMed Google Scholar

  8. S Nakagawa
    View author publications

    Search author on:PubMed Google Scholar

  9. T Mayumi
    View author publications

    Search author on:PubMed Google Scholar

  10. T Fujita
    View author publications

    Search author on:PubMed Google Scholar

  11. A Yamamoto
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Okada, N., Tsujino, M., Hagiwara, Y. et al. Administration route-dependent vaccine efficiency of murine dendritic cells pulsed with antigens. Br J Cancer 84, 1564–1570 (2001). https://doi.org/10.1054/bjoc.2001.1801

Download citation

  • Received: 30 October 2000

  • Revised: 05 March 2001

  • Accepted: 06 March 2001

  • Published: 29 May 2001

  • Issue date: 01 June 2001

  • DOI: https://doi.org/10.1054/bjoc.2001.1801

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • dendritic cell
  • administration route
  • vaccine efficiency
  • cytotoxic T lymphocyte
  • migration

This article is cited by

  • ALW peptide ameliorates lupus nephritis in MRL/lpr mice

    • Huixia Wang
    • Mei Lu
    • Yumin Xia

    Arthritis Research & Therapy (2019)

  • Promoting the accumulation of tumor-specific T cells in tumor tissues by dendritic cell vaccines and chemokine-modulating agents

    • Nataša Obermajer
    • Julie Urban
    • Pawel Kalinski

    Nature Protocols (2018)

  • A phase I/IIa study of adjuvant immunotherapy with tumour antigen-pulsed dendritic cells in patients with hepatocellular carcinoma

    • Jeong-Hoon Lee
    • Yoon Lee
    • Yoon Jun Kim

    British Journal of Cancer (2015)

  • Potent CD4+ T-cell epitope P30 enhances HER2/neu-engineered dendritic cell-induced immunity against Tg1-1 breast cancer in transgenic FVBneuN mice by enhanced CD4+ T-cell-stimulated CTL responses

    • Y Xie
    • Y Chen
    • J Xiang

    Cancer Gene Therapy (2013)

  • Dendritic cell-directed lentivector vaccine induces antigen-specific immune responses against murine melanoma

    • H G Yang
    • B L Hu
    • P Wang

    Cancer Gene Therapy (2011)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited