Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Frequent p53 mutation in brain (fetal)-type glycogen phosphorylase positive foci adjacent to human ‘de novo’ colorectal carcinomas
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 29 May 2001

Frequent p53 mutation in brain (fetal)-type glycogen phosphorylase positive foci adjacent to human ‘de novo’ colorectal carcinomas

  • S Shimada1,
  • K Shiomori1,
  • S Tashima1,
  • J Tsuruta2 &
  • …
  • M Ogawa1 

British Journal of Cancer volume 84, pages 1497–1504 (2001)Cite this article

  • 725 Accesses

  • 9 Citations

  • Metrics details

This article has been updated

Abstract

‘de novo’ carcinogenesis has been advocated besides ‘adenoma carcinoma sequence’ as another dominant pathway leading to colorectal carcinoma. Our recent study has demonstrated that the distribution of brain (fetal)-type glycogen phosphorylase (BGP) positive foci (BGP foci) has a close relationship with the location of ‘de novo’ carcinoma. The aims of the present study are to investigate genetic alteration in the BGP foci and to characterize them in the ‘de novo’ carcinogenesis. 17 colorectal carcinomas without any adenoma component expressing both immunoreactive p53 and BGP protein were selected from 96 resected specimens from our previous study. Further investigations to examine the proliferating cell nuclear antigen (PCNA)-labelling index, and the p53 and the codon 12 of K-ras mutation using the polymerase chain reaction-single strand conformation polymorphism were performed in the BGP foci, BGP negative mucosa and carcinoma. The BGP foci were observed sporadically in the transitional mucosa adjacent to the carcinoma in all cases. The PCNA labelling index in the BGP foci was significantly higher than that in the BGP negative mucosa (P< 0.001). p53 mutations were observed in 8 carcinomas, but no K-ras mutation was detected. Interestingly, although none of the overexpressions of p53 protein was detected immunohistochemically in the BGP positive foci, the p53 gene frequently (41.2% of the BGP foci tested) mutated in spite of no K-ras mutation. The present study demonstrates potentially premalignant foci in the colorectal transitional mucosa with frequent p53 gene mutation. It is suggested that BGP foci are promising candidates for the further investigation of ‘de novo’ colorectal carcinogenesis. © 2001 Cancer Research Campaign http://www.bjcancer.com

Similar content being viewed by others

Diagnostic accuracy of Fusobacterium nucleatum IgA and IgG ELISA test in colorectal cancer

Article Open access 15 January 2021

Global loss of promoter–enhancer connectivity and rebalancing of gene expression during early colorectal cancer carcinogenesis

Article Open access 30 October 2024

Molecular genetic analysis of colorectal carcinoma with an aggressive extraintestinal immunohistochemical phenotype

Article Open access 27 September 2024

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Aoki T, Takeda S, Yanagisawa A, Kato Y, Ajioka Y, Watanabe H and Nakamura Y (1994) APC and p53 mutations in de novo colorectal adenocarcinomas. Hum Mutat 3: 342–346

    Article  CAS  Google Scholar 

  • Baker SJ, Preisinger AC and Jessup M (1990) p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res 50: 7717–7722

    CAS  PubMed  Google Scholar 

  • Bird RP (1987) Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen. Cancer Lett 37: 147–151

    Article  CAS  Google Scholar 

  • Brito MJ, Filipe MI and Morris RW (1992) Cell proliferation study on gastric carcinoma and non-involved gastric mucosa using a bromodeoxyuridine (BrdU) labeling technique. Eur J Cancer Prev 1: 429–435

    Article  CAS  Google Scholar 

  • Buchman VL, Chumakov PM, Nikkina NN, Samarina PP and Georgiev GP (1988) A variation in the structure of the protein-coding of the human p53 gene. Gene 70: 245–252

    Article  CAS  Google Scholar 

  • Cori CF and Cori GT (1936) Mechanism and formation of hexosemonophosphate in muscle and isolation of a new phosphate ester. Proc Soc Exp Biol Med 34: 702–712

    Article  Google Scholar 

  • Davis CH, Schliselfeld LH, Wolf DP, Leavitt CA and Krebs EG (1967) Interrelationships among glycogen phosphorylase isozymes. J Biol Chem 242: 4824–4833

    CAS  PubMed  Google Scholar 

  • Dunn JM, Hastrich DJ, Newcomb P, Webb JC, Maitland NJ and Farndon JR (1994) Correlation between p53 mutations and antibody staining in breast carcinoma. Br J Surg 81: 1410–1412

    Article  Google Scholar 

  • Fearon ER and Jones PA (1992) Progressing toward a molecular description of colorectal cancer development. FASEB J 6: 2783–2790

    Article  CAS  Google Scholar 

  • Fearon ER and Vogelstein B (1990) A genetic model for colorectal Tumorigenesis. Cell 61: 759–767

    Article  CAS  Google Scholar 

  • Filipe MI and Cooke KB (1974) Changes in composition of mucin in the mucosa adjacent to carcinoma of the colon as compared with the normal: a biochemical investigation. J Clin Pathol 27: 315–318

    Article  CAS  Google Scholar 

  • Gelinas RP, Froman BE, McElroy F, Tait RC and Gorin FA (1989) Human brain glycogen phosphorylase: characterization of fetal cDNA and genomic sequence. Mol Brain Res 6: 177–185

    Article  CAS  Google Scholar 

  • Greenblatt MS, Bennett WP, Hollstein M and Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4855–4878

    CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B and Harris CC (1991) p53 mutations in human cancers. Science 253: 49–53

    Article  CAS  Google Scholar 

  • Ignacio PC, Baldwin BA, Vijayan VK, Tait RC and Gorin FA (1990) Brain isozyme of glycogen phosphorylase: immunohistochemical localization within the central nervous system. Brain Res 529: 42–49

    Article  CAS  Google Scholar 

  • Jordanova A, Kalaydjieva L, Savov A, Claustres M, Schwarz M, Estivill X, Angelicheva D, Haworth A, Casals T and Kremensky I (1997) SSCP analysis: a blind sensitivity trial. Human Mutat 10: 65–70

    Article  CAS  Google Scholar 

  • Krebs EG and Fisher EH (1956) The phosphorylase b to be a converting enzyme of rabbit skeletal muscle. Biochem Biophys Acta 20: 150

    Article  CAS  Google Scholar 

  • Kuramoto S and Oohara T (1988) Minute cancers arising de novo in the human large intestine. Cancer 61: 829–834

    Article  CAS  Google Scholar 

  • Levine AJ, Perry ME, Chang A, Silver A, Dittmer D, Wu M and Welsh D (1994) The role of the p53 suppressor gene in tumorigenesis. The 1993 Walter Hubert Lecture. Br J Cancer 69: 409–416

    Article  CAS  Google Scholar 

  • Lisboa BW, Vogtlander S, Gilster T, Riethdorf L, Milde-Langosch K and Loning T (1997) Molecular and immunohistochemical analysis of p53 mutations in scrapings and tissue from preinvasive and invasive breast cancer. Virchows Archiv 431: 375–381

    Article  CAS  Google Scholar 

  • Lohmann D, Ruhri C, Schmitt M, Graeff H and Hofler H (1993) Accumulation of p53 protein as an indicator for p53 gene mutation in breast cancer. Occurrence of false-positives and false-negatives. Diagnostic Mol Pathol 1: 36–41

    Article  Google Scholar 

  • Matsuzaki H, Shimada S, Uno K, Tsuruta J and Ogawa M (1998) Novel subtyping of intestinal metaplasia in the human stomach: brain-type glycogen phosphorylase expression in the proliferative zone and its relationship with carcinogenesis. Am J Clin Pathol 109: 181–189

    Article  CAS  Google Scholar 

  • Minamoto T, Sawaguchi K, Mai M, Yamashita N, Sugimura T and Esumi H (1994) Infrequent K-ras activation in superficial-type(flat) colorectal adenomas and adenocarcinomas. Cancer Res 54: 2841–2844

    CAS  PubMed  Google Scholar 

  • Ming SC, Goldman H and Freiman DG (1967) Intestinal metaplasia and histogenesis of carcinoma in human stomach. Cancer 20: 1418–1429

    Article  CAS  Google Scholar 

  • Morson BC (1974) The polyp-cancer sequence in the large bowel. Proc R Soc Med 67: 451–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller J, Mueller E, Hoepner I, Jutting J, Bethke B, Stolte M and Hofler H (1996) Expression of bcl-2 and p53 in de novo and ex-adenoma colon carcinoma: a comparative immunohistochemical study. J Pathol 180: 259–265

    Article  CAS  Google Scholar 

  • Nagayo T (1975) Microscopical cancer of the stomach; a study on histogenesis of gastric carcinoma. Int J Cancer 16: 52–60

    Article  CAS  Google Scholar 

  • Nakano K, Hwang P and Fletterick RJ (1986) Complete cDNA sequence for rabbit muscle glycogen phosphorylase. FEBS Lett 204: 283–287

    Article  CAS  Google Scholar 

  • Newgard CB, Littman DR, Genderen CV, Smith M and Fletterick RJ (1988) Human brain glycogen phosphorylase. J Biol Chem 263: 3850–3857

    CAS  PubMed  Google Scholar 

  • Newgard CB, Hwang PK and Fletterick RJ (1989) The family of glycogen phosphorylase: structure and function. Crit Rev Biochem Mol Biol 24: 69–99

    Article  CAS  Google Scholar 

  • Oohara T, Tohma H, Takezoe K, Ukawa S, Johjima Y, Asakura R, Ano G and Kurosawa H (1982) Minute gastric cancers less than 5 mm in diameter. Cancer 50: 801–810

    Article  CAS  Google Scholar 

  • Pretlow TP, Barrow BJ, Ashton WS, O'Riordan MA, Pretlow TG, Jurcisek JA and Stellato TA (1991) Aberrant crypts: putative preneoplastic foci in human colonic mucosa. Cancer Res 51: 564–567

    Google Scholar 

  • Pretlow TP, Brasitus TA, Fulton NC, Cheyer C and Kaplan EL (1993) K-ras mutations in putative preneoplastic lesions in human colon:. J Natl Cancer Inst 85: 2004–2007

    Article  CAS  Google Scholar 

  • Rembacken BJ, Fujii T, Cairn A, Dixon MF, Yoshida S, Chalmers DM and Axon ART (2000) Flat and depressed colonic neoplasms: prospective study of 1000 colonoscopies in the UK. Lancet 355: 1211–1214

    Article  CAS  Google Scholar 

  • Sambrook J, Fitsch EF and Maniatis T (1989) Molecular cloning. In a laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Sato K, Morris HP and Weinhouse S (1972) Phosphorylase: a new isozyme in rat hepatic tumors and fetal liver. Science 178: 879–881

    Article  CAS  Google Scholar 

  • Shamsuddin AM, Kato Y, Kunishima N, Sugano H and Trump B (1985) Carcinoma in situ in non-polypoid mucosa of the large intestine. Cancer 56: 2849–2854

    Article  CAS  Google Scholar 

  • Shi SR, Key ME and Kalra KL (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues. An enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem 39: 741–748

    Article  CAS  Google Scholar 

  • Shiao YH, Rugge M, Correa P, Lehmann HP and Scheer WD (1994) p53 alteration in gastric precancerous lesions. Am J Pathol 144: 511–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada S, Maeno M, Misumi A and Akagi M (1984) Histochemical study of phosphorylase in proliferating cells of intestinal metaplasia and carcinoma of the human stomach. Scand J Gastroenterol 19: 965–970

    Article  CAS  Google Scholar 

  • Shimada S, Maeno M, Akagi M, Hatayama I, Sato T and Sato K (1986) Immunohistochemical detection of glycogen phosphorylase isoenzymes in rat and human tissues. Histochem J 18: 334–338

    Article  CAS  Google Scholar 

  • Shimada S, Maeno M, Misumi A, Takano S and Akagi M (1987) Antigen reversion of glycogen phosphorylase isoenzyme in carcinoma and proliferative zone of intestinal metaplasia of the human stomach. Gastroenterology 93: 35–40

    Article  CAS  Google Scholar 

  • Shimada S, Honmyo U, Yagi Y, Ikeda T, Yokota T and Ogawa M (1992) Expression of glycogen phosphorylase activity in minute gastric carcinoma. Am J Gastroenterol 87: 1230–1231

    CAS  PubMed  Google Scholar 

  • Shimada S, Tashima S, Yamaguchi K, Matsuzaki H and Ogawa M (1999) Carcinogenesis of intestinal-type gastric cancer and colorectal cancer is commonly accompanied by expression of brain (fetal)-type glycogenphosphorylase. J Exp Clin Cancer Res 18: 111–118

    CAS  PubMed  Google Scholar 

  • Shimoda T, Ikegami M, Fujisaki J, Matsui T, Aizawa S and Ishikawa E (1989) Early colorectal carcinoma with special reference to its development de novo. Cancer 64: 1138–1146

    Article  CAS  Google Scholar 

  • Shivapurkar N, Huang L, Ruggeri B, Swalsky PA, Bakker A, Finkelstein S, Frost A and Silverberg (1997) K-ras and p53 mutations in aberrant crypt foci and colonic tumors from colon cancer patients. Cancer Lett 115: 39–46

    Article  CAS  Google Scholar 

  • Tashima S, Shimada S, Matsuzaki H, Yamaguchi K, Tsuruta J and Ogawa M (2000) Expression of brain-type glycogen phosphorylase is a potentially novel early biomarker in the carcinogenesis of human colorectal carcinomas. Am J Gastroenterol 95: 255–263

    Article  CAS  Google Scholar 

  • Umetani N, Sasaki S, Watanabe T, Matsuda K and Muto T (2000) Involvement of APC and K-ras mutation in non-polypoid colorectal tumorigenesis. Br J Cancer 82: 9–15

    Article  CAS  Google Scholar 

  • Wang O, Gao H, Chen Y, Wang Y, He J and Jin C (1992) Biopathologic characteristics of DNA content in crypt cells of transitional mucosa adjacent to carcinomas of the rectum and rectosigmoid. Dis Colon Rectum 35: 670–675

    Article  CAS  Google Scholar 

  • Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM and Bos JL (1988) Genetic alterations during colorectal-tumor development. N Eng J Med 319: 525–532

    Article  CAS  Google Scholar 

  • Yamagata S, Muto T, Uchida Y, Masaki T, Sawada T, Tsuno N and Hirooka T (1994) Lower incidence of K-ras codon 12 mutation in flat colorectal adenomas than in polypoid adenomas. Jpn J Cancer Res 85: 147–151

    Article  CAS  Google Scholar 

  • Zhang H, Nordenskjold B, Dufmats M, Soderkvist P and Sun XF (1998) K-ras mutations in colorectal adenocarcinomas and neighbouring transitional mucosa. Eur J Cancer 34: 2053–2057

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Surgery II, Kumamoto University School of Medicine, 1-1-1 Honjo, Kumamoto, 860-8556, Japan

    S Shimada, K Shiomori, S Tashima & M Ogawa

  2. Department of Surgical Pathology, Kumamoto University School of Medicine, 1-1-1 Honjo, Kumamoto, 860-8556, Japan

    J Tsuruta

Authors
  1. S Shimada
    View author publications

    Search author on:PubMed Google Scholar

  2. K Shiomori
    View author publications

    Search author on:PubMed Google Scholar

  3. S Tashima
    View author publications

    Search author on:PubMed Google Scholar

  4. J Tsuruta
    View author publications

    Search author on:PubMed Google Scholar

  5. M Ogawa
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Shimada, S., Shiomori, K., Tashima, S. et al. Frequent p53 mutation in brain (fetal)-type glycogen phosphorylase positive foci adjacent to human ‘de novo’ colorectal carcinomas. Br J Cancer 84, 1497–1504 (2001). https://doi.org/10.1054/bjoc.2001.1824

Download citation

  • Received: 25 September 2000

  • Revised: 07 December 2000

  • Accepted: 25 January 2001

  • Published: 29 May 2001

  • Issue date: 01 June 2001

  • DOI: https://doi.org/10.1054/bjoc.2001.1824

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • colorectal carcinoma
  • ‘de novo’ carcinoma
  • glycogen phosphorylase
  • p53
  • K-ras
  • transitional mucosa
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited