Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
p53 missense but not truncation mutations are associated with low levels of p21CIP1/WAF1mRNA expression in primary human sarcomas
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 12 June 2001

p53 missense but not truncation mutations are associated with low levels of p21CIP1/WAF1mRNA expression in primary human sarcomas

  • S Mousses1,2,
  • N Gokgoz1,
  • J S Wunder1,3,
  • H Ozcelik1,2,
  • S Bull1,
  • R S Bell1,3 &
  • …
  • I L Andrulis1,2,4 

British Journal of Cancer volume 84, pages 1635–1639 (2001)Cite this article

  • 618 Accesses

  • 5 Citations

  • Metrics details

This article has been updated

Abstract

Many growth-suppressing signals converge to control the levels of the CDK inhibitor p21CIP1/WAF1. Some human cancers exhibit low levels of expression of p21CIP1/WAF1and mutations in p53 have been implicated in this down-regulation. To evaluate whether the presence of p53 mutations was related to the in vivo expression of p21CIP1/WAF1mRNA in sarcomas we measured the p21CIP1/WAF1mRNA levels for a group of 71 primary bone and soft tissue tumours with known p53 status. As expected, most tumours with p53 mutations expressed low levels of p21CIP1/WAF1mRNA. However, we identified a group of tumours with p53 gene mutations that exhibited normal or higher levels of p21CIP1/WAF1mRNA. The p53 mutations in the latter group were not the common missense mutations in exons 4–9, but were predominantly nonsense mutations predicted to result in truncation of the p53 protein. The results of this study suggest that different types of p53 mutations can have different effects on the expression of downstream genes such as p21CIP1/WAF1in human sarcomas. Copyright 2001 Cancer Research Campaign http://www.bjcancer.com

Similar content being viewed by others

The mutational spectrum in whole exon of p53 in oral squamous cell carcinoma and its clinical implications

Article Open access 15 December 2022

TP53: the unluckiest of genes?

Article Open access 23 October 2024

Porcine model elucidates function of p53 isoform in carcinogenesis and reveals novel circTP53 RNA

Article Open access 18 February 2021

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Bookstein R and Lee WH (1991) Molecular genetics of the retinoblastoma suppressor gene. Crit Rev Oncog 2: 211–227

    CAS  Google Scholar 

  • Chen J-Y, Funk WD, Woodring EW, Shay JW and Minna JD (1993) Heterogeneity of transcriptional activity of mutant p53 protein and p53 DNA target sequences. Oncogene 8: 2159–2166

    CAS  Google Scholar 

  • Chene P and Bechter E (1999) p53 mutants without a functional tetramerisation domain are not oncogenic. J Mol Biol 286: 1269–1274

    CAS  Google Scholar 

  • Chomczynski P and Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform. Anal Biochem 162: 156–159

    CAS  PubMed Central  Google Scholar 

  • Cordon-Cardo C, Latres E, Drobnjak M, Oliva MR, Pollack D, Woodruff JM, Marechal V, Chen J, Brennan MF and Levine AJ (1994) Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res 54: 794–799

    CAS  Google Scholar 

  • Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M, Finlay C and Levine AJ (1993) Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Nature Genet 4: 42–45

    CAS  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B (1993) WAF1, a potential mediator of p53 tumour suppressor. Cell 75: 817–825

    CAS  PubMed Central  Google Scholar 

  • El-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE and Jackman J (1994) WAF1/CIP1 is induced in p53 -mediated G1arrest and apoptosis. Cancer Res 54: 1169–1174

    CAS  Google Scholar 

  • El-Deiry WS, Tokino T, Waldman T, Oliner JD, Velculescu VE, Burrell M, Hill DE, Healy E, Rees JL and Hamilton SR (1995) Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res 55: 2910–2919

    CAS  Google Scholar 

  • Finlay CA (1993) The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol Cell Biol 13: 301–306

    CAS  PubMed Central  Google Scholar 

  • Gokgoz N, Mousses S, Wunder JS, Eskandarian S, Bell RS and Andrulis IL Mutations in the p53 gene are an early event in human osteosarcoma progression, (submitted)

  • Hartwell LH (1992) Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71: 543–546

    CAS  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K and Elledge J (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816

    CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B and Harris CC (1991) p53 mutations in human cancer. Science 253: 49–53

    CAS  PubMed Central  Google Scholar 

  • Hui AM, Kanai Y, Sakamoto M, Tsuda H and Hirohashi S (1997) Reduced p21 (WAF1/CIP1) expression and p53 mutation in hepatocellular carcinomas. Hepatology 25: 575–579

    CAS  Google Scholar 

  • Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B and Fornace AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587–597

    CAS  PubMed Central  Google Scholar 

  • Khatib ZA, Matsushime H, Valentine M, Shapiro DN, Sherr CJ and Look AT (1993) Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res 53: 5535–5541

    CAS  PubMed Central  Google Scholar 

  • Koopmann J, Maintz D, Schild S, Schramm J, Louis DN, Wiestler OD and von Deimling A (1995) Multiple polymorphisms, but no mutations, in the WAF1/CIP1 gene in human brain tumors. Br J Cancer 72: 1230–1233

    CAS  PubMed Central  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88: 323–331

    CAS  Google Scholar 

  • Li Y, Jenkins CW, Nichols MA and Xiong Y (1994) Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 9: 2261–2268

    CAS  Google Scholar 

  • Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, Vogelstein B and Jacks T (1995) Evidence for a p53 -independent pathway for upregulation of SDI1/CIP1/WAF1/p21 RNA in human cells. Genes Dev 9: 935–944

    CAS  Google Scholar 

  • Malkin D, Li FP, Strong LC, Fraumeni, Jr JF, Nelson CE, Kim DH, Kassel J, Gryka MA, Bishoff FZ, Tainsky MA and Friend SH (1990) Germ line p53 mutations in familial syndrome of breast cancer, sarcomas and other neoplasms. Science 250: 1233–1238

    CAS  Google Scholar 

  • Matsushita K, Kobayashi S, Kato M, Itoh Y, Okuyama K, Sakiyama S and Isono K (1996) Reduced messenger RNA expression level of p21 CIP1 in human colorectal carcinoma tissues and its association with p53 gene mutation. Int J Cancer 69: 259–264

    CAS  Google Scholar 

  • Mousses S, Ozcelik H, Lee PD, Malkin D, Bull SB and Andrulis IL (1995) Two variants of the CIP1/WAF1 gene occur together and are associated with human cancer. Hum Mol Genet 4: 1089–1092

    CAS  Google Scholar 

  • Mousses S, McAuley L, Bell RS, Kandel R and Andrulis IL (1996) Molecular and immunohistochemical identification of p53 alterations in bone and soft tissue sarcomas. Mod Pathol 9: 1–6

    CAS  Google Scholar 

  • Özçelik H, Mousses S and Andrulis IL (1995) Low levels of expression of an inhibitor of cyclin-dependent kinases (CIP1/WAF1) in primary breast carcinomas with p53 mutations. Clinical Cancer Research 1: 907–912

    Google Scholar 

  • Paulovich AG, Toczyski DP and Hartwell H (1997) When checkpoints fail. Cell 88: 315–321

    CAS  Google Scholar 

  • Reissmann PT, Simon MA, Lee WH and Slamon DJ (1989) Studies of the retinoblastoma gene in human sarcomas. Oncogene 4: 839–843

    CAS  Google Scholar 

  • Shiohara M, El-Deiry WS, Wada M, Nakamaki T, Takeuchi S, Yang R, Chen DL, Vogelstein B and Koeffler HP (1994) Absence of WAF1 mutations in a variety of human malignancies. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Blood 84: 3781–3784

    CAS  Google Scholar 

  • Sun Y, Hildesheim A, Li H, Li Y, Chen JY, Cheng YJ, Hayes RB, Rothman N, Bi WF and Cao Y (1995) No point mutation but a codon 31ser → arg polymorphism of the WAF-1/CIP-1/p21 tumor suppressor gene in nasopharyngeal carcinoma (NPC): the polymorphism distinguishes Caucasians from Chinese. Cancer Epidemiol Biomarkers Prev 4: 261–267

    CAS  Google Scholar 

  • Taubert H, Meye A and Wurl P (1996) Prognosis is correlated with p53 mutation type for soft tissue sarcoma patients. Cancer Res 56: 4134–4136

    CAS  Google Scholar 

  • Waldman T and Kinzler KW Vogelstein B p21 is necessary for the p53 -mediated G1 arrest in human cancer cells (1995). Cancer Res 55: 5187–5190

  • Wan M, Cofer KF and Dubeau L (1996) WAF1/CIP1 structural abnormalities do not contribute to cell cycle deregulation in ovarian cancer. Br J Cancer 73: 1398–1400

    CAS  PubMed Central  Google Scholar 

  • Watanabe H, Fukuchi K, Takagi Y, Tomoyasu S, Tsuruoka N and Gomi K (1995) Molecular analysis of the WAF1 (p21) gene in diverse types of human tumors. Biochem Biophys Acta 1263: 275–280

    Google Scholar 

  • Wunder JS, Czitrom AA, Kandel R and Andrulis IL (1991) Analysis of alterations in the retinoblastoma gene and tumor grade in bone and soft-tissue sarcomas. J Natl Cancer Inst 83: 194–200

    CAS  Google Scholar 

  • Wunder JS, Eppert K, Burrow SR, Gokgoz N, Levine AJ, Bell RS and Andrulis IL (1999) Co-amplification and Overexpression of CDK4, SAS, and MDM2 in human parosteal osteosarcomas. Oncogene 18: 783–788

    CAS  Google Scholar 

  • Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R and Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704

    CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Samuel Lunenfeld Research Institute, 600 University Ave, Toronto, M59 1XS, Ontario

    S Mousses, N Gokgoz, J S Wunder, H Ozcelik, S Bull, R S Bell & I L Andrulis

  2. Departments of Laboratory Medicine and Pathobiology, 600 University Ave, Toronto, M59 1XS, Ontario

    S Mousses, H Ozcelik & I L Andrulis

  3. University Muscoskeletal Oncology Unit, Mount Sinai Hospital, 600 University Ave, Toronto, M59 1XS, Ontario

    J S Wunder & R S Bell

  4. Departments of Molecular and Medical Genetics, University of Toronto, Ontario, M5S 1A8, Canada

    I L Andrulis

Authors
  1. S Mousses
    View author publications

    Search author on:PubMed Google Scholar

  2. N Gokgoz
    View author publications

    Search author on:PubMed Google Scholar

  3. J S Wunder
    View author publications

    Search author on:PubMed Google Scholar

  4. H Ozcelik
    View author publications

    Search author on:PubMed Google Scholar

  5. S Bull
    View author publications

    Search author on:PubMed Google Scholar

  6. R S Bell
    View author publications

    Search author on:PubMed Google Scholar

  7. I L Andrulis
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Mousses, S., Gokgoz, N., Wunder, J. et al. p53 missense but not truncation mutations are associated with low levels of p21CIP1/WAF1mRNA expression in primary human sarcomas. Br J Cancer 84, 1635–1639 (2001). https://doi.org/10.1054/bjoc.2001.1844

Download citation

  • Received: 28 April 2000

  • Revised: 12 March 2001

  • Accepted: 20 March 2001

  • Published: 12 June 2001

  • Issue date: 15 June 2001

  • DOI: https://doi.org/10.1054/bjoc.2001.1844

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • sarcomas
  • p21CIP1/WAF1expression
  • p53 mutations

This article is cited by

  • Autophagy-mediated growth inhibition of malignant glioma cells by the BH3-mimetic gossypol

    • Na-Yeon Kim
    • Michael Lee

    Molecular & Cellular Toxicology (2014)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited