Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Uptake of IgG in osteosarcoma correlates inversely with interstitial fluid pressure, but not with interstitial constituents
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 11 December 2001

Uptake of IgG in osteosarcoma correlates inversely with interstitial fluid pressure, but not with interstitial constituents

  • C de Lange Davies1,
  • B Ø Engesæter1,
  • I Haug1,
  • I W Ormberg1,
  • J Halgunset2 &
  • …
  • C Brekken1 

British Journal of Cancer volume 85, pages 1968–1977 (2001)Cite this article

  • 896 Accesses

  • 19 Citations

  • 3 Altmetric

  • Metrics details

This article has been updated

Abstract

The uptake of therapeutic macromolecules in solid tumours is assumed to be hindered by the heterogeneous vascular network, the high interstitial fluid pressure, and the extracellular matrix. To study the impact of these factors, we measured the uptake of fluorochrome-labelled IgG using confocal laser scanning microscopy, interstitial fluid pressure by the ‘wick-in-needle’ technique, vascular structure by stereological analysis, and the content of the extracellular matrix constituents collagen, sulfated glycosaminoglycans and hyaluronan by colourimetric assays. The impact of the microenvironment on these factors was studied using osteosarcomas implanted either subcutaneously or orthotopically around the femur in athymic mice. The uptake of IgG was found to correlate inversely with the interstitial fluid pressure and the tumour volume in orthotopic, but not subcutaneous tumours. No correlation was found between IgG uptake and the level of any of the extracellular matrix constituents. The content of both collagen and glycosaminoglycans depended on the site of tumour growth. The orthotopic tumours had a higher vascular density than the subcutaneous tumours, as the vascular surface and length were 2–3-fold higher. The data indicate that the interstitial fluid pressure is a dominant factor in controlling the uptake of macromolecules in solid tumours; and the site of tumour growth is important for the uptake of macromolecules in small tumours, extracellular matrix content and vascularization. © 2001 Cancer Research Campaign http://www.bjcancer.com

Similar content being viewed by others

Therapy-induced modulation of tumor vasculature and oxygenation in a murine glioblastoma model quantified by deep learning-based feature extraction

Article Open access 23 January 2024

Low expression of IGFBP4 and TAGLN accelerate the poor overall survival of osteosarcoma

Article Open access 03 June 2022

Linking tumour angiogenesis and tumour immunity

Article 14 August 2025

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Bernsen HJJA, Rijken PFJW, Hagenmeier NEM and van der Kogel AJ (1999) A quantitative analysis of vascularization and perfusion of human glioma xenografts at different implantation sites. Microvasc Res 57: 244–257

    Article  CAS  PubMed  Google Scholar 

  • Bitter T and Muir HM (1962) A modified uronic acid carbazole reaction. Anal Biochem 4: 330–334

    Article  CAS  PubMed  Google Scholar 

  • Bjørnæs I and Rofstad EK (2001) Microvascular permeability to macromolecules in human melanoma xenografts assessed by contrast-enhanced MRI – intertumor and intratumor heterogeneity. Magn Reson Imaging, (in press)

  • Boucher Y and Jain RK (1992) Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: Implications for vascular collapse. Cancer Res 52: 5110–5114

    CAS  PubMed  Google Scholar 

  • Boucher Y, Baxter LT and Jain RK (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Implications for therapy. Cancer Res 50: 4478–4484

    CAS  PubMed  Google Scholar 

  • Brekken C, Bruland ØS and Davies CdeL (2000a) Interstitial fluid pressure in human osteosarcoma xenografts: Significance of implantation site and the response to intratumoral injection of hyaluronidase. Anticancer Res 20: 3503–3512

    CAS  PubMed  Google Scholar 

  • Brekken C, Hjelstuen MH, Bruland ØS and Davies CDEL (2000b) Hyaluronidase-induced periodic modulation of the interstitial fluid pressure increases selective antibody uptake in human osteosarcoma xenografts. Anticancer Res 20: 3513–3520

    CAS  PubMed  Google Scholar 

  • Fabra A, Nakajima M, Bucana CD and Fidler IJ (1992) Modulation of the invasive phenotype of human colon carcinoma cells by organ specific fibroblasts of nude mice. Differentiation 52: 101–110

    Article  CAS  PubMed  Google Scholar 

  • Fadnes HO, Reed RK and Aukland K (1977) Interstitial fluid pressure in rats measured with a modified wick technique. Microvasc Res 14: 27–36

    Article  CAS  PubMed  Google Scholar 

  • Farndale RW, Buttle DJ and Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883: 173–177

    Article  CAS  PubMed  Google Scholar 

  • Fidler IJ (1995) Modulation of the organ microenvironment for treatment of cancer metastasis. J Natl Cancer Inst 87: 1588–1592

    Article  CAS  PubMed  Google Scholar 

  • Fodstad Ø, Brøgger A, Bruland Ø, Solheim ØP, Nesland JM and Pihl A (1986) Characteristics of a cell line established from a patient with multiple osteosarcoma, appearing 13 years after treatment for bilateral retinoblastoma. Int J Cancer 38: 33–40

    Article  CAS  PubMed  Google Scholar 

  • Fukumura D, Yuan F, Monsky WL, Chen Y and Jain RK (1997) Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am J Pathol 151: 679–688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukumura D, Xavier R, Sugiura T, Chen Y, Park E-C, Lu N, Selig M, Nielsen G, Taksir T, Jain RK and Seed B (1998) Tumor induction of VEGF promotor activity in stromal cells. Cell 94: 715–725

    Article  CAS  PubMed  Google Scholar 

  • Gohongi T, Fukumura D, Boucher Y, Yun C-O, Soff GA, Compton C, Todoroki T and Jain RK (1999) Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth: Involvement of transforming growth factor β1. Nat Med 5: 1203–1208

    Article  CAS  PubMed  Google Scholar 

  • Gullino PM and Grantham FH (1962) The influence of the host and the neoplastic cell population on the collagen content of a tumor mass. J Natl Cancer Inst 27: 648–653

    Google Scholar 

  • Gundersen HJ (1979) Estimations of tubuli or cylinder Lv, Sv, and Vv on thick sections. J Microsc 117: 333–345

    Article  PubMed  Google Scholar 

  • Hilmas DE and Gillette EL (1974) Morphometric analysis of the microvasculature of tumors during growth and after irradiation. Cancer 33: 103–110

    Article  CAS  PubMed  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP and Jain RK (1998) Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc Natl Acad Sci USA 95: 4607–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iozzo R (1985) Biology of disease. Proteoglycans: Structure, function, and role in neoplasia. Lab Invest 53: 373–396

    CAS  PubMed  Google Scholar 

  • Jackson DS and Cleary EG (1976) The determination of collagen and elastin. In: Glick D (ed). Methods of biochemical analysis, Interscience publ.: New York 25–76

    Google Scholar 

  • Jackson RL, Bush SJ and Cardin AD (1991) Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev 71: 481–539

    Article  CAS  PubMed  Google Scholar 

  • Jain RK (1987) Transport of molecules in the tumor interstitium: A review. Cancer Res 47: 3039–3051

    CAS  PubMed  Google Scholar 

  • Jain RK (2001) Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews 46: 149–168

    Article  CAS  PubMed  Google Scholar 

  • Jain RK and Baxter LT (1988) Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure. Cancer Res 48: 7022–7032

    CAS  PubMed  Google Scholar 

  • Kedem O and Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27: 229–245

    Article  CAS  PubMed  Google Scholar 

  • Knudson W, Biswas C and Toole BP (1984) Interactions between human tumor cells and fibroblasts stimulate hyaluronate synthesis. Proc Natl Acad Sci USA 81: 6767–6771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C-G, Heijn M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M, Koike C, Park KR, Ferrara N, Jain RK, Suit HD and Boucher Y (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60: 5565–5570

    CAS  PubMed  Google Scholar 

  • Netti PA, Hamberg LM, Babich JW, Kierstead D, Graham W, Hunter GJ, Wolf GL, Fischman A, Boucher Y and Jain RK (1999) Enhancement of fluid filtration across tumor vessels: Implication for delivery of macromolecules. Proc Natl Acad Sci USA 96: 3137–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netti PA, Berk DA, Swartz MA, Grodzinsky AJ and Jain RK (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60: 2497–2503

    CAS  PubMed  Google Scholar 

  • Pluen A, Boucher Y, Ramanujan S, McKee TD, Gohongi T, di Tomaso E, Brown EB, Izumi Y, Campbell RB, Berk DA and Jain RK (2001) Role of tumor-host interactions in interstitial diffusion of macromolecules: Cranial vs. subcutaneous tumors. Proc Natl Acad Sci USA 98: 4628–4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu XL, Brown LV, Parameswaran S, Marek VW, Ibbott GS and Lai-Fook SJ (1999) Effect of hyaluronidase on albumin diffusion in lung interstitium. Lung 177: 273–288

    Article  CAS  PubMed  Google Scholar 

  • Rubin K, Sjöquist M, Gustafsson AM, Isaksson B, Salvessen G and Reed RK (2000) Lowering of tumoral interstitial fluid pressure by prostaglandin E1 is paralleled by an increased uptake of51Cr-EDTA. Int J Cancer 86: 636–643

    Article  CAS  PubMed  Google Scholar 

  • Saltzman WM, Radomsky ML, Whaley KJ and Cone RA (1994) Antibody diffusion in human cervical mucus. Biophys J 66: 508–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenoy V and Rosenblatt J (1995) Diffusion of macromolecules in collagen and hyaluronic acid, rigid-rod – flexible polymer, composite matrices. Macromolecules 28: 8751–8758

    Article  CAS  Google Scholar 

  • Solesvik OV, Rofstad EK and Brustad T (1982) Vascular structure of five human malignant melanomas grown in athymic nude mice. Br J Cancer 46: 557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunderkötter C, Steinbrink K, Goebeler M, Bhardwaj R and Sorg C (1994) Machrophages and angiogenesis. J Leukoc Biol 55: 410–422

    Article  PubMed  Google Scholar 

  • Swabb EA, Wei J and Gullino PM (1974) Diffusion and convection in normal and neoplastic tissue. Cancer Res 34: 2814–2822

    CAS  PubMed  Google Scholar 

  • Weibel ER (1979) Stereological Methods. I, Practical Methods, Academic Press: New York

    Google Scholar 

  • Woessner JF (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this amino acid. Arch Biochem Biophys 93: 440–447

    Article  CAS  PubMed  Google Scholar 

  • Yuan F (1998) Transvascular drug delivery in solid tumors. Sem Radiat Oncol 8: 164–175

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics, The Norwegian University of Science and Technology, Trondheim, 7491, Norway

    C de Lange Davies, B Ø Engesæter, I Haug, I W Ormberg & C Brekken

  2. Department of Laboratory Medicine, The Norwegian University of Science and Technology, Trondheim, 7491, Norway

    J Halgunset

Authors
  1. C de Lange Davies
    View author publications

    Search author on:PubMed Google Scholar

  2. B Ø Engesæter
    View author publications

    Search author on:PubMed Google Scholar

  3. I Haug
    View author publications

    Search author on:PubMed Google Scholar

  4. I W Ormberg
    View author publications

    Search author on:PubMed Google Scholar

  5. J Halgunset
    View author publications

    Search author on:PubMed Google Scholar

  6. C Brekken
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Davies, C., Engesæter, B., Haug, I. et al. Uptake of IgG in osteosarcoma correlates inversely with interstitial fluid pressure, but not with interstitial constituents. Br J Cancer 85, 1968–1977 (2001). https://doi.org/10.1054/bjoc.2001.2180

Download citation

  • Received: 12 July 2000

  • Revised: 03 August 2001

  • Accepted: 17 September 2001

  • Published: 11 December 2001

  • Issue date: 14 December 2001

  • DOI: https://doi.org/10.1054/bjoc.2001.2180

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • IgG uptake
  • interstitial fluid pressure
  • extracellular matrix
  • vasculature
  • osteosarcoma
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited