Abstract
We have characterized the fusogenic activity of a plasmid expression system encoding vesicular stomatitis virus G protein (VSVG) in vitro and in vivo. Over 70% of murine colon and renal carcinoma cells (MC38 and Renca, respectively) transfected with VSVG plasmid in vitro fused and formed polykaryons upon incubation with pH 5.5 media. Using a plasmid expression system encoding VSVG and bacterial green fluorescent protein (GFP) formulated in a polyvinyl pyrrolidone (PVP) delivery system, diffusion of GFP throughout the VSVG-induced syncytia was shown in vivo in MC38 and Renca tumors. Moreover, tumor-bearing mice showed tumor growth inhibition following in vivo transfection with VSVG plasmid at an optimal dose of 48 μg. We have previously shown that direct injection of interleukin-12 (IL-12) plasmid complexed with PVP into tumors induces a strong immune response. In the current study, we assessed the ability of VSVG to elicit an antitumor response by enhancing cytokine gene delivery within the tumor mass. Tumor-bearing mice treated intratumorally with both VSVG/PVP and IL-12/PVP (48 and 24 μg, respectively) showed increase in tumor rejection when compared to IL-12 plasmid alone (75% vs. 50%, respectively). These data suggest that VSVG gene therapy can be used in combination with other therapeutic genes to induce an antitumor response in vivo by enhancing the expression of the gene of interest. Cancer Gene Therapy (2001) 8, 55–62
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Eslahi, N., Muller, S., Nguyen, L. et al. Fusogenic activity of vesicular stomatitis virus glycoprotein plasmid in tumors as an enhancer of IL-12 gene therapy. Cancer Gene Ther 8, 55–62 (2001). https://doi.org/10.1038/sj.cgt.7700270
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/sj.cgt.7700270