Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A tandemly repeated thyroglobulin core promoter has potential to enhance efficacy for tissue-specific gene therapy for thyroid carcinomas

Abstract

Recombinant adenoviruses, carrying herpes simplex virus thymidine kinase (HSVtk) genes, were developed to evaluate the possibility of tissue-specific gene therapy for thyroid carcinomas. The HSVtk gene was driven by a minimal thyroglobulin (TG) promoter (AdTGtk) and a tandemly repeated minimal TG promoter (Ad2×TGtk) to obtain thyroid-specific cell killing ability. The transduction of HSVtk genes by infection with Ad2×TGtk followed by ganciclovir (GCV) treatment showed more powerful cytotoxicity for TG-producing FRTL5 cells, a rat normal thyroid cell line, and FTC-133 cells, a human follicular thyroid carcinoma cell line, than when infected with AdTGtk in vitro. The cell killing ability of Ad2×TGtk was 10- to 30-fold higher than that of AdTGtk and similar to that of AdCMVtk, which carries HSVtk under the control of CMV promoter. Whereas after treatment with adenovirus/GCV to non–TG-producing cell lines (undifferentiated thyroid carcinoma cell lines and carcinoma cell lines from other tissues), Ad2×TGtk and AdTGtk needed more than 100-fold concentrated GCV to reach IC50 compared to AdCMVtk. We confirmed the enhanced efficacy of Ad2×TGtk for tissue-specific cytotoxicity in vivo. After adenovirus/GCV treatment for FTC-133 tumor-bearing nude mice, Ad2×TGtk enhanced tumor growth inhibition and survival rates compared to AdTGtk. Tumor growth inhibition and survival rates by Ad2×TGtk were similar to that by AdCMVtk. Moreover, any toxic effect for rat normal tissues was not revealed after intravenous injections with Ad2×TGtk and intraperitoneal administrations with GCV in vivo, whereas severe liver damages were observed after treatment with AdCMVtk/GCV. These data indicate a beneficial effect of Ad2×TGtk for tissue-specific gene therapy for TG-producing thyroid carcinomas without toxicity for normal tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zeiger MJ, Takiyama Y, Bishop JO, Ellison AR, Saji M, Levine MA . Adenoviral infection of thyroid cells: a rationale for gene therapy for metastatic thyroid carcinomas Surgery 1996 120: 921–925

    Article  CAS  PubMed  Google Scholar 

  2. Chen S-H, Shine HD, Goodman LC, Grossman RG, Woo SLC . Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vitro Proc Natl Acad Sci USA 1994 91: 3054–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Perez-Cruet MJ, Trask TW, Chen S-H et al. Adenovirus mediated gene therapy of experimental gliomas J Neurosci Res 1994 39: 506–511

    Article  CAS  PubMed  Google Scholar 

  4. Qian C, Bilbao R, Bruna O, Priet J . Induction of sensitivity to ganciclovir in human hepatocellular carcinoma cells by adenovirus-mediated gene transfer of herpes simplex virus thymidine kinase Hepatology 1995 22: 118–123

    CAS  PubMed  Google Scholar 

  5. Smythe WR, Hwang HC, Elshami AA, Amin KM, Eck SL . Treatment of experimental human mesothelioma using adenovirus transfer of the herpes simplex thymidine kinase gene Ann Surg 1995 222: 79–86

    Article  Google Scholar 

  6. O'Mally BW Jr, Chen S-H, Schwartz MR, Woo SLC . Adenovirus-mediated gene therapy for human head and neck squamous cell cancer in a nude mouse model Cancer Res 1995 55: 1080–1085

    Google Scholar 

  7. Eastham JA, Chen S-H, Schgal I et al. Prostate cancer gene therapy: herpes simplex virus thymidine kinase gene transduction followed by ganciclovir in mouse and prostate cancer models Hum Gene Ther 1996 7: 515–523

    Article  CAS  PubMed  Google Scholar 

  8. Rosenfeld ME, Wang M, Siegal GP et al. Adenovirus-mediated delivery of herpes simplex virus thymidine kinase results in tumor reduction and prolonged survival in SCID mouse model of human ovarian carcinoma J Mol Med 1996 74: 455–462

    Article  CAS  PubMed  Google Scholar 

  9. Chen L, Chen D, Manome Y, Dong Y, Fine HA, Kufe DW . Breast cancer selective gene expression and therapy mediated by recombinant adenovirus containing the DF3/MUC1 promoter J Clin Invest 1995 96: 2775–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaneko S, Hallenbech P, Kotani T et al. Adenovirus-mediated gene therapy of hepatocellular carcinoma using cancer-specific gene expression Cancer Res 1995 55: 5283–5287

    CAS  PubMed  Google Scholar 

  11. Kanai F, Shiratori Y, Yoshida Y et al. Gene therapy for α-fetoprotein–producing human hepatoma cells by adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene Hepatology 1996 23: 1359–1368

    CAS  PubMed  Google Scholar 

  12. Ko SC, Cheon J, Kao C et al. Osteocalcin promoter–based toxic gene therapy for the treatment of osteosarcoma in experimental models Cancer Res 1996 56: 4614–4619

    CAS  PubMed  Google Scholar 

  13. Parr M, Manome Y, Tanaka T et al. Tumor-selective transgene expression in vivo mediated by an E2F-responsive adenoviral vector Nat Med 1997 10: 1145–1149

    Article  Google Scholar 

  14. DeGroot LJ, Jameson JL . Endocrinology 4th ed Philadelphia: Saunders 2001 1548–1566

    Google Scholar 

  15. Wilson JD, Foster DW . Williams Textbook of Endocrinology 8th ed Philadelphia: Saunders 1992 467–475

    Google Scholar 

  16. Braverman LE, Utigar RD . The Thyroid: A Fundamental and Clinical Text 7th ed Philadelphia: Lippincott-Raven 1996 922–945

    Google Scholar 

  17. Musti AM, Avvedimento EV, Polistina C et al. The complete structure of the rat thyroglobulin gene Proc Natl Acad Sci USA 1986 83: 323–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DiLauro R, Obici S, Acquaviva AM, Alvino CG . Construction of recombinant plasmids containing rat thyroglobulin mRNA sequences Gene 1982 19: 117–125

    Article  CAS  Google Scholar 

  19. Van Heuverswyn B, Streydio C, Brocas H, Refetoff S, Dumont J, Vassart G . Thyrotropin controls transcriptionofthe thyroglobulin gene Proc Natl Acad Sci USA 1984 81: 5941–5945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerard CM, Lefort A, Christohpe D et al. Control of thyroperoxidase and thyroglobulin transcription by cAMP: evidence for distinct regulatory mechanisms Mol Endocrinol 1989 3: 2110–2118

    Article  CAS  PubMed  Google Scholar 

  21. Musti AM, Ursini VM, Avvedimento EV, Zimario V, Di Lauro R . A type specific factor recognizes the rat thyroglobulin promoter Nucleic Acids Res 1989 15: 8149–8166

    Article  Google Scholar 

  22. Civitareale D, Lonigro R . A thyroid-specific nuclear protein essential for tissue-specific expression of the thyroglobulin promoter EMBO J 1989 8: 2537–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guazzi S, Price M, DeFelice M, Damante G, Mattei MG, Di Lauro R . Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity EMBO J 1990 9: 3631–3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Plachov D, Chowdhury K, Walther C, Simon D, Guenet JL, Gruss P . Pax 8, a murine paired box gene expressed in the developing excretory system and thyroid gland Development 1990 110: 643–651

    CAS  PubMed  Google Scholar 

  25. Zannini M, Francis-Lang H, Plachov D, Di Lauro R . Pax-8, a paired domain-containing protein, binds to a sequence overlapping the recognition site of a homeodomain and activates transcription from two thyroid-specific promoters Mol Cell Biol 1992 12: 4230–4241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sinclair AJ, Lonigro R, Civitareale D, Ghibelli L, Di Lauro R . The tissue-specific expression on the thyroglobulin gene requires interaction between thyroid-specific and ubiquitous factors Eur J Biochem 1990 193: 311–318

    Article  CAS  PubMed  Google Scholar 

  27. Javaux F, Bertaux F, Donda A et al. Functional role of TTF-1 binding sites in bovine thyroglobulin promoter FEBS Lett 1992 3: 222–226

    Article  Google Scholar 

  28. Christophe-Hobertus C, van Renterghem P, Pichon B, Christophe D . Expression of a transactivation-deficient form of thyroid transcription factor I decreases the activity of co-transfected thyroglobulin and thyroperoxidase promoters FEBS Lett 1996 399: 140–142

    Article  CAS  PubMed  Google Scholar 

  29. Mascia A, DeFelice M, Lipardi C et al. Transfection of TTF-1 gene induces thyroglobulin gene expression in undifferentiated FRT cells Biochim Biophys Acta 1997 1354: 171–181

    Article  CAS  PubMed  Google Scholar 

  30. Pouillon V, Pichon B, Donda A, Christophe D . TTF-2 does not appear to be a key mediator of the effect of cyclic AMP on thyroglobulin gene transcription in primary cultured dog thyrocytes Biochem Biophys Res Commun 1998 242: 327–331

    Article  CAS  PubMed  Google Scholar 

  31. Christophe D, Gerard C, Juvenal G et al. Identification of a cAMP-responsive region in thyroglobulin gene promoter Mol Cell Endocrinol 1989 64: 5–18

    Article  CAS  PubMed  Google Scholar 

  32. Abramowicz MJ, Vassart G, Christophe D . Thyroid peroxidase gene promoter confers TSH responsiveness to heterologous reporter genes in transfection experiments Biochem Biophys Res Commun 1990 166: 1257–1264

    Article  CAS  PubMed  Google Scholar 

  33. Braiden V, Nagayama Y, Iitaka M, Namba H, Niwa M, Yamashita S . Retro-virus mediated suicide gene/prodrug therapy targeting thyroid carcinoma using a thyroid-specific promoter Endocrinology 1998 139: 3996–3999

    Article  CAS  PubMed  Google Scholar 

  34. Zhang R, Straus FH, DeGroot LJ . Adenovirus-mediated gene therapy for thyroid carcinoma using thymidine kinase controlled by thyroglobulin promoter demonstrates high specificity and low toxicity Thyroid 2001 11: 115–123

    Article  CAS  PubMed  Google Scholar 

  35. Sato Y, Tanaka K, Lee G et al. Enhanced and gene expression via tissue-specific production of Cre recombinase using adenovirus vector Biochem Biophys Res Commun 1998 244: 455–462

    Article  CAS  PubMed  Google Scholar 

  36. Nagayama Y, Nishihara E, Iitaka M, Namba H, Yamashita S, Niwa M . Enhanced efficacy of transcriptionally targeted suicide gene/prodrug therapy for thyroid carcinoma with the Cre–loxP system Cancer Res 1999 59: 3049–3052

    CAS  PubMed  Google Scholar 

  37. Kitazono M, Chuman Y, Aikou T, Fojo T . Construction of gene therapy vectors targeting thyroid cells: enhancement of activity and specificity with histone deacetylase inhibitors and agents modulating the cyclic adenosine 3′,5′-monophosphate pathway and demonstration of activity in follicular and anaplastic thyroid carcinoma cells J Clin Endocrinol Metab 2001 86: 834–840

    CAS  PubMed  Google Scholar 

  38. Ambesi-Impiombato FS, Parks LA, Coon HG . Culture of hormone-dependent functional epithelial cells from rat thyroids Proc Natl Acad Sci USA 1980 77: 3455–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takenaka M, Noguchi T, Inoue H, Yamada K, Mashuda T, Tanaka T . Rat pyruvate kinase M gene J Biol Chem 1989 264: 2363–2367

    CAS  PubMed  Google Scholar 

  40. Hayashi Y, DePaoli AM, Burant CF, Refetoff S . Expression of a thyroid hormone–responsive recombinant gene introduced into adult mice livers by replication-defective adenovirus can be regulated by endogenous thyroid hormone receptor J Biol Chem 1994 269: 23872–23875

    CAS  PubMed  Google Scholar 

  41. Zhang R, Minemura K, DeGroot LJ . Immunotherapy for medullary thyroid carcinoma by a replication-defective adenovirus transducing murine interleukin-2 Endocrinology 1998 139: 601–608

    Article  CAS  PubMed  Google Scholar 

  42. Maniatis T, Fritsch EF, Sarubrook J . Molecular Cloning — A Laboratory Manual Cold Spring Harbor: Cold Spring Harbor Laboratory 1982 16.61–16.62

    Google Scholar 

Download references

Acknowledgements

We are grateful to RD Lauro for providing the pTGCAT vector, SLC Woo for the pBS-tk plasmid, and S Refetoff for the pJM17 plasmid and AdTKluc. We also thank F Hoffmann-La Roche for providing GCV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teiji Takeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, T., Yamazaki, M., Minemura, K. et al. A tandemly repeated thyroglobulin core promoter has potential to enhance efficacy for tissue-specific gene therapy for thyroid carcinomas. Cancer Gene Ther 9, 864–874 (2002). https://doi.org/10.1038/sj.cgt.7700511

Download citation

  • Received:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700511

Keywords

This article is cited by

Search

Quick links