Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interleukin-10 gene transfer to peritoneal mesothelial cells suppresses peritoneal dissemination of gastric cancer cells due to a persistently high concentration in the peritoneal cavity

Abstract

Interleukin (IL)-10 has potent biological properties including an inhibitory action on the proliferation and metastasis of various cancer cells. However, it is difficult to maintain a high concentration of this cytokine as it has a short half life. In this study, we evaluated whether peritoneal mesothelial cells (PMCs) could be suitable for maintaining a high concentration of IL-10 using adenoviral gene transfer. We also evaluated the therapeutic effects of an intraperitoneal injection with adenoviral vector containing mouse IL-10 gene (Ad-mIL-10) using a mouse peritoneal dissemination model of MKN45 gastric cancer cells. We demonstrated that in vitro transfection efficiency of a recombinant adenovirus containing the bacterial β-galactosidase gene (Ad-LacZ) was approximately 10-fold higher for primarily isolated PMCs than MKN45. The entire peritoneum was transfected until 3 weeks after an intraperitoneal Ad-LacZ injection. Ad-mIL-10 treatment increased intraperitoneal IL-10 levels until 3 weeks after treatment, and then significantly inhibited peritoneal cancer growth by inhibiting angiogenesis. This treatment also improved cachexia and prolonged mice survival. We thus concluded that IL-10 gene transfer in PMCs could be a new strategy for the prevention of peritoneal dissemination of gastric cancer due to the resulting persistently high IL-10 concentration in the peritoneal cavity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Fiorentino DF, Bond MW, Mosmann TR . Two types of mouse helper T cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989; 170: 2081–2095.

    Article  CAS  PubMed  Google Scholar 

  2. de Waal Malefyt R, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 1991; 174: 915–924.

    Article  CAS  PubMed  Google Scholar 

  3. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O'Garra A . IL-10 inhibits cytokine production by activated macrophages. J Immunol 1991; 147: 3815–3822.

    CAS  PubMed  Google Scholar 

  4. Bogdan C, Vodovotz Y, Nathan C . Macrophage deactivation by interleukin 10. J Exp Med 1991; 174: 1549–1555.

    Article  CAS  PubMed  Google Scholar 

  5. Huang S, Ullrich SE, Bar-Eli M . Regulation of tumor growth and metastasis by interleukin-10: the melanoma experience. J Interferon Cytokine Res 1999; 19: 697–703.

    Article  CAS  PubMed  Google Scholar 

  6. Cervenak L, Morbidelli L, Donati D, Donnini S, Kambayashi T, Wilson JL et al. Abolished angiogenicity and tumorigenicity of Burkitt lymphoma by interleukin-10. Blood 2000; 96: 2568–2573.

    CAS  PubMed  Google Scholar 

  7. Kohno T, Mizukami H, Suzuki M, Saga Y, Takei Y, Shimpo M et al. Interleukin-10-mediated inhibition of angiogenesis and tumor growth in mice bearing VEGF-producing ovarian cancer. Cancer Res 2003; 63: 5091–5094.

    CAS  PubMed  Google Scholar 

  8. Stearns ME, Rhim J, Wang M . Interleukin 10 (IL-10) inhibition of primary human prostate cell-induced angiogenesis: IL-10 stimulation of tissue inhibitor of metalloproteinase-1 and inhibition of matrix metalloproteinase (MMP)-2/MMP-9 secretion. Clin Cancer Res 1999; 5: 189–196.

    CAS  PubMed  Google Scholar 

  9. Kundu N, Beaty TL, Jackson MJ, Fulton AM . Antimetastatic and antitumor activities of interleukin 10 in a murine model of breast cancer. J Natl Cancer Inst 1996; 88: 536–541.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng LM, Ojclus DM, Garaud F, Roth C, Maxwell E, Li Z et al. Interleukin-10 inhibits tumor metastasis through an NK cell-dependent mechanism. J Exp Med 1996; 184: 579–584.

    Article  CAS  PubMed  Google Scholar 

  11. Berman RM, Susuki T, Tahara H, Robbins PD, Narula SK, Lotze MT . Systemic administration of cellular IL-10 induces an effective, specific, and long-lived immune response against established tumors in mice. J Immunol 1996; 157: 231–238.

    CAS  PubMed  Google Scholar 

  12. Kundu N, Fulton AM . Interleukin-10 inhibits tumor metastasis, downregulates MHC class I, and enhances NK lysis. Cell Immunol 1997; 180: 55–61.

    Article  CAS  PubMed  Google Scholar 

  13. Di Carlo E, Coletti A, Modesti A, Giovarelli M, Forni G, Musiani P . Local release of interleukin-10 by transfected mouse adenocarcinoma cells exhibits pro- and anti-inflammatory activity and results in a delayed tumor rejection. Eur Cytokine Netw 1998; 9: 61–68.

    CAS  PubMed  Google Scholar 

  14. Kundu N, Dorsey R, Jackson MJ, Guiterrez P, Wilson K, Fu S et al. Interleukin-10 gene transfer inhibits murine mammary tumors and elevates nitric oxide. Int J Cancer 1998; 76: 713–719.

    Article  CAS  PubMed  Google Scholar 

  15. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A . Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683–765.

    Article  CAS  PubMed  Google Scholar 

  16. Chernoff AE, Granowitz EV, Shapiro L, Vannier E, Lonnemann G, Angel JB et al. A randomized, controlled trial of IL-10 in humans. Inhibition of inflammatory cytokine production and immune responses. J Immunol 1995; 154: 5492–5499.

    CAS  PubMed  Google Scholar 

  17. Kokura S, Yoshida N, Ishikawa T, Higashihara H, Sakamoto N, Takagi T et al. Interleukin-10 plasmid DNA inhibits subcutaneous tumor growth of Colon26 adenocarcinoma in mice. Cancer Lett 2005; 218: 171–179.

    Article  CAS  PubMed  Google Scholar 

  18. Benevolo M, Mottolese M, Cosimelli M, Tedesco M, Giannarelli D, Vasselli S et al. Diagnostic and prognostic value of peritoneal immunocytology in gastric cancer. J Clin Oncol 1998; 16: 3406–3411.

    Article  CAS  PubMed  Google Scholar 

  19. Gosselin R, Berndt W . Diffusional transport of solutes through mesentery and peritoneum. J Theor Biol 1962; 3: 487.

    Article  CAS  Google Scholar 

  20. Topley N, Jorres A, Luttmann W, Petersen MM, Lang MJ, Thierauch KH et al. Human peritoneal mesothelial cells synthesize interleukin-6: induction by IL-1β and TNF α. Kidney Int 1993; 43: 226–233.

    Article  CAS  PubMed  Google Scholar 

  21. Betjes MG, Tuk CW, Struijk DG, Krediet RT, Arisz L, Hart M et al. Interleukin-8 production by human peritoneal mesothelial cells in response to tumor necrosis factor-α, interleukin-1, and medium conditioned by macrophages cocultured with Staphylococcus epidermidis. J Infect Dis 1993; 168: 1702–1710.

    Article  Google Scholar 

  22. Lanfrancone L, Boraschi D, Ghiara P, Falini B, Grignani F, Peri G et al. Human peritoneal mesothelial cells produce many cytokines (granulocyte colony-stimulating factor [CSF], granulocyte-monocyte-CSF, macrophage-CSF, interleukin-1 [IL-1], and IL-6) and are activated and stimulated to grow by IL-1. Blood 1992; 80: 2835–2842.

    CAS  PubMed  Google Scholar 

  23. Jayne DG, Perry SL, Morrison E, Farmery SM, Guillou PJ . Activated mesothelial cells produce heparin-binding growth factors: implications for tumour metastasis. Br J Cancer 2000; 82: 1233–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sako A, Kitayama J, Yamaguchi H, Kaisaki S, Suzuki H, Fukatsu K et al. Vascular endothelial growth factor synthesis by human omental mesothelial cells is augmented by fibroblast growth factor-2: possible role of mesothelial cell on the development of peritoneal metastasis. J Surg Res 2003; 115: 113–120.

    Article  CAS  PubMed  Google Scholar 

  25. Balabanian K, Foussat A, Bouchet-Delbos L, Couderc J, Krzysiek R, Amara A et al. Interleukin-10 modulates the sensitivity of peritoneal B lymphocytes to chemokines with opposite effects on stromal cell-derived factor-1 and B-lymphocyte chemoattractant. Blood 2002; 99: 427–436.

    Article  CAS  PubMed  Google Scholar 

  26. Sako A, Kitayama J, Koyama H, Ueno H, Uchida H, Hamada H et al. Transduction of soluble Flt-1 gene to peritoneal mesothelial cells can effectively suppress peritoneal metastasis of gastric cancer. Cancer Res 2004; 64: 3624–3628.

    Article  CAS  PubMed  Google Scholar 

  27. Fujikawa K, Takai K, Suga A, Naito K, Ohata A, Nakasone S et al. Expression of mRNA for growth factors and extracellular matrix proteins after injury to cultured peritoneal cells: does the healing process contribute to peritoneal ultrastructural alteration? J Artif Organs 2003; 6: 253–259.

    Article  CAS  PubMed  Google Scholar 

  28. Robson RL, McLoughlin RM, Witowski J, Loetscher P, Wilkinson TS, Jones SA et al. Differential regulation of chemokine production in human peritoneal mesothelial cells: IFN-γ controls neutrophil migration across the mesothelium in vitro and in vivo. J Immunol 2001; 167: 1028–1038.

    Article  CAS  PubMed  Google Scholar 

  29. Takakuwa T, Endo S, Shirakura Y, Yokoyama M, Tamatani M, Tohyama M et al. Interleukin-10 gene transfer improves the survival rate of mice inoculated with Escherichia coli. Crit Care Med 2000; 28: 2685–2689.

    Article  CAS  PubMed  Google Scholar 

  30. Kuwamura H, Tominaga K, Shiota M, Ashida R, Nakao T, Sasaki E et al. Growth inhibition of colon cancer cells by transfection of dominant-negative apoptosis signal-regulating kinase-1. Oncol Rep 2007; 17: 781–786.

    CAS  PubMed  Google Scholar 

  31. Suto R, Tominaga K, Mizuguchi H, Sasaki E, Higuchi K, Kim S et al. Dominant-negative mutant of c-Jun gene transfer: a novel therapeutic strategy for colorectal cancer. Gene Ther 2004; 11: 187–193.

    Article  CAS  PubMed  Google Scholar 

  32. Fujiki F, Mukaida N, Hirose K, Ishida H, Harada A, Ohno S et al. Prevention of adenocarcinoma colon 26-induced cachexia by interleukin 10 gene transfer. Cancer Res 1997; 57: 94–99.

    CAS  PubMed  Google Scholar 

  33. Giovarelli M, Musiani P, Modesti A, Dellabona P, Casorati G, Allione A et al. Local release of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances antitumor reaction and elicits a strong cytotoxic lymphocyte and antibody-dependent immune memory. J Immunol 1995; 155: 3112–3123.

    CAS  PubMed  Google Scholar 

  34. Zeni F, Tardy B, Vindimian M, Comtet C, Page Y, Cusey I et al. High levels of tumor necrosis factor-alpha and interleukin-6 in the ascitic fluid of cirrhotic patients with spontaneous bacterial peritonitis. Clin Infect Dis 1993; 17: 218–223.

    Article  CAS  PubMed  Google Scholar 

  35. Zebrowski BK, Liu W, Ramirez K, Akagi Y, Mills GB, Ellis LM . Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Ann Surg Oncol 1999; 6: 373–378.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports Science and Technology of Japan and the Yasuda Medical Foundation.

Author information

Authors and Affiliations

Corresponding author

Correspondence to K Tominaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, F., Tominaga, K., Shiota, M. et al. Interleukin-10 gene transfer to peritoneal mesothelial cells suppresses peritoneal dissemination of gastric cancer cells due to a persistently high concentration in the peritoneal cavity. Cancer Gene Ther 15, 51–59 (2008). https://doi.org/10.1038/sj.cgt.7701104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701104

Keywords

This article is cited by

Search

Quick links