Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Acta Pharmacologica Sinica
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. acta pharmacologica sinica
  3. original article
  4. article
Novel cyclophilin D inhibitors derived from quinoxaline exhibit highly inhibitory activity against rat mitochondrial swelling and Ca2+ uptake/release
Download PDF
Download PDF
  • Original Article
  • Published: 01 October 2005

Molecular Pharmacology

Novel cyclophilin D inhibitors derived from quinoxaline exhibit highly inhibitory activity against rat mitochondrial swelling and Ca2+ uptake/release

  • Hong-xia Guo1 na1,
  • Feng Wang1 na1,
  • Kun-qian Yu1,
  • Jing Chen1,
  • Dong-lu Bai1,
  • Kai-xian Chen1,
  • Xu Shen1,2 &
  • …
  • Hua-liang Jiang1,2 

Acta Pharmacologica Sinica volume 26, pages 1201–1211 (2005)Cite this article

  • 2639 Accesses

  • 42 Citations

  • 3 Altmetric

  • Metrics details

Abstract

Aim:

To investigate methods for identifying specific cyclophilin D (CypD) inhibitors derived from quinoxaline, thus developing possible lead compounds to inhibit mitochondrial permeability transition (MPT) pore opening.

Methods:

Kinetic analysis of the CypD/inhibitor interaction was quantitatively performed by using surface plasmon resonance (SPR) and fluorescence titration (FT) techniques. IC50 values of these inhibitors were determined by PPIase inhibition activity assays.

Results:

All the equilibrium dissociation constants (KD) of the seven compounds binding to CypD were below 10 μmol/L. The IC50 values were all consistent with the SPR and FT results. Compounds GW2, 5, 6, and 7 had high inhibition activities against Ca2+-dependent rat liver mitochondrial swelling and Ca2+ uptake/release. Compound GW5 had binding selectivity for CypD over CypA.

Conclusion:

The agreement between the measured IC50 values and the results of SPR and FT suggests that these methods are appropriate and powerful methods for identifying CypD inhibitors. The compounds we screened using these methods (GW1-7) are reasonable CypD inhibitors. Its potent ability to inhibit mitochondrial swelling and the binding selectivity of GW5 indicates that GW5 could potentially be used for inhibiting MPT pore opening.

Similar content being viewed by others

Discovery and molecular basis of subtype-selective cyclophilin inhibitors

Article Open access 26 September 2022

Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions

Article Open access 17 July 2023

The mitochondrial chaperone TRAP1 regulates F-ATP synthase channel formation

Article Open access 25 May 2022

Article PDF

References

  1. Liu X, Kim CN, Yang J, Jemmerson R, Wang X . Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147–57.

    Article  CAS  Google Scholar 

  2. Susin SA, Lorenzon HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441–6.

    Article  CAS  Google Scholar 

  3. Olson M, Kornbluth S . Mitochondria in apoptosis and human disease. Curr Mol Med 2001; 1: 91–122.

    Article  CAS  Google Scholar 

  4. Crompton M . Mitochondria and aging: a role for the permeability transition? Aging Cell 2004; 3: 3–6.

    Article  CAS  Google Scholar 

  5. Waldmeier PC, Zimmermann K, Qian T, Tintelnot-Blomley M, Lemasters JJ . Cyclophilin D as a drug target. Curr Med Chem 2003; 10: 1485–506.

    Article  CAS  Google Scholar 

  6. Mattson MP, Kroemer G . Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol Med 2003; 9: 196–205.

    Article  CAS  Google Scholar 

  7. Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE . Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res 2005; 79: 231–9.

    Article  CAS  Google Scholar 

  8. Crompton M . On the involvement of mitochondrial intermembrane junctional complexes in apoptosis. Curr Med Chem 2003; 10: 1473–84.

    Article  CAS  Google Scholar 

  9. Connern CP, Halestrap AP . Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. Biochem J 1992; 284: 381–5.

    Article  CAS  Google Scholar 

  10. Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX . Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 1989; 337: 476–8.

    Article  CAS  Google Scholar 

  11. Lin DT, Lechleiter JD . Mitochondrial targeted cyclophilin D protects cells from cell death by peptidyl prolyl isomerization. J Biol Chem 2002; 277: 31134–41.

    Article  CAS  Google Scholar 

  12. Li Y, Johnson N, Capano M, Edwards M, Crompton M . Cyclophilin-D promotes the mitochondrial permeability transition but has opposite effects on apoptosis and necrosis. Biochem J 2004; 383: 101–9.

    Article  CAS  Google Scholar 

  13. Schubert A, Grimm S . Cyclophilin D, a component of the permeability transition-pore, is an apoptosis repressor. Cancer Res 2004; 64: 85–93.

    Article  CAS  Google Scholar 

  14. Machida K, Osada H . Molecular interaction between cyclophilin D and adenine nucleotide translocase in cytochrome c release: does it determine whether cytochrome c release is dependent on permeability transition or not? Ann NY Acad Sci 2003; 1010: 182–5.

    Article  CAS  Google Scholar 

  15. Crompton M . The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999; 341: 233–49.

    Article  CAS  Google Scholar 

  16. Halestrap AP, McStay GP, Clarke SJ . The permeability transition pore complex: another view. Biochimie 2002; 84: 153–66.

    Article  CAS  Google Scholar 

  17. Crompton M, Costi A . Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem 1988; 178: 489–501.

    Article  CAS  Google Scholar 

  18. Crompton M, Barksby E, Johnson N, Capono M . Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie 2002; 84: 143–52.

    Article  CAS  Google Scholar 

  19. Alaimo RJ [ inventor]. Norwich Eaton Pharmaceuticals [assignee]. Thiocyanatoquinoxaline compounds with immunomodulating activity. US patent 4540693. September 10, 1985.

  20. Magnus P, Thurston LS . Synthesis of the vinblastine-like antitumor bis-indole alkaloid navelbine analogue desethyldihydronavelbine. J Org Chem 1991; 56: 1166–70.

    Article  CAS  Google Scholar 

  21. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning: A Laboratory Manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  22. Luo C, Luo H, Zheng S, Gui C, Yue L, Yu C, et al. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochem Biophys Res Commun 2004; 321: 557–65.

    Article  CAS  Google Scholar 

  23. Husi H, Zurini MGM . Comparative binding studies of cyclophilins to cyclosporin A and derivatives by fluorescence measurement. Anal Biochem 1994; 222: 251–5.

    Article  CAS  Google Scholar 

  24. Handschumacher RE, Harding MW, Rice J, Drugge RJ . Cyclophilin A: a specific cytosolic binding protein for cyclosporin A. Science 1984; 226: 544–7.

    Article  CAS  Google Scholar 

  25. Kofron JL, Kuzmic P, Kishore V, Colon-Bonilla E, Rich DH . Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay. Biochemistry 1991; 30: 6127–34.

    Article  CAS  Google Scholar 

  26. Blattner JR, He L, Lemasters JJ . Screening assays for the mitochondrial permeability transition using a fluorescence multiwell plate reader. Anal Biochem 2001; 295: 220–6.

    Article  CAS  Google Scholar 

  27. Lowry OH, Rosenbrough NH, Farr AL, Randall JR . Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265–75.

    CAS  Google Scholar 

  28. Thompson J, Higgins D, Gibson T . CLUSTAL_W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673–80.

    Article  CAS  Google Scholar 

  29. Gamble T, Vajdos F, Yoo S, Worthylake D, Houseweart M, Sundquist WI, et al. Crystal structure of human cyclophilin a bound to the amino-terminal domain of HIV-1 capsid. Cell 1996; 87: 1285–94.

    Article  CAS  Google Scholar 

  30. Vajdos F, Yoo S, Houseweart M, Sundquist W, Hill C . Crystal structure of cyclophilin a complexed with a binding site peptide from the HIV-1 capsid protein. Protein Sci 1997; 6: 2297–307.

    Article  CAS  Google Scholar 

  31. Sedrani R, Kallen J, Martin Cabrejas L, Papageorious C, Senia F, Rohrbach S, et al. Sanglifehrin-cyclophilin interaction: degradation work, synthetic macrocyclic analogues, x-ray crystal structure and binding data. J Am Chem Soc 2003; 125: 3849–59.

    Article  CAS  Google Scholar 

  32. Sali A, Blundell T . Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993; 234: 779–815.

    Article  CAS  Google Scholar 

  33. Insight II [molecular modeling package]. San Diego, California, the United States: Molecular Simulations; 2000.

  34. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, et al. A Second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995; 117: 5179–97.

    Article  CAS  Google Scholar 

  35. Bowie JU, Luthy R, Eisenberg D . A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991; 253: 164–70.

    Article  CAS  Google Scholar 

  36. Sybyl [molecular modeling package]. St Louis, MO: Tripos Associates; 2000.

  37. Ewing T, Kuntz ID . Critical evaluation of search algorithms for automated molecular docking and database screening. J Comput Chem 1997; 18: 1175–89.

    Article  CAS  Google Scholar 

  38. Huber W, Persicace S, Kohler J, Muller F, Schlatter D . SPR-based interaction studies with small molecular weight ligands using hAGT fusion proteins. Anal Biochem 2004; 333: 280–8.

    Article  CAS  Google Scholar 

  39. Kallen J, Spitzfaden C, Zurini MGM, Wider G, Widmer H, Wuthrich K, et al. Structure of human cyclophilin and its binding site for cyclosporin A determined by X-ray crystallography and NMR spectroscopy. Nature 1991; 353: 276–9.

    Article  CAS  Google Scholar 

  40. Pfluefel G, Kallen J, Schirmer T, Jansonius JN, Zurini MGM, Walkinshaw MD, et al. X-ray structure of a decameric cyclophilin-cyclosporin crystal complex. Nature 1993; 361: 9–4.

    Article  Google Scholar 

  41. Fischer G, Berger E, Bang H . Kinetic β-deuterium isotope effects suggest a covalent mechanism for the protein folding enzyme peptidylprolyl cis/trans-isomerase. FEBS Lett 1989; 250: 267–70.

    Article  CAS  Google Scholar 

  42. Helekar S, Patrick J . Peptidyl prolyl cis-trans isomerase activity of cyclophilin A in functional homo-oligomeric receptor expression. Proc Natl Acad Sci USA 1997; 94: 5432–7.

    Article  CAS  Google Scholar 

Download references

Author information

Author notes
  1. Hong-xia Guo and Feng Wang: These authors contributed equally.

Authors and Affiliations

  1. Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 201203, China

    Hong-xia Guo, Feng Wang, Kun-qian Yu, Jing Chen, Dong-lu Bai, Kai-xian Chen, Xu Shen & Hua-liang Jiang

  2. School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China

    Xu Shen & Hua-liang Jiang

Authors
  1. Hong-xia Guo
    View author publications

    Search author on:PubMed Google Scholar

  2. Feng Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Kun-qian Yu
    View author publications

    Search author on:PubMed Google Scholar

  4. Jing Chen
    View author publications

    Search author on:PubMed Google Scholar

  5. Dong-lu Bai
    View author publications

    Search author on:PubMed Google Scholar

  6. Kai-xian Chen
    View author publications

    Search author on:PubMed Google Scholar

  7. Xu Shen
    View author publications

    Search author on:PubMed Google Scholar

  8. Hua-liang Jiang
    View author publications

    Search author on:PubMed Google Scholar

Corresponding authors

Correspondence to Xu Shen or Hua-liang Jiang.

Additional information

Project supported by the State Key Program for Basic Research of China (No 2004CB-518905), the National High Technology Research and Development Program of China (No 2002AA33011 and 2005AA235030), the National Natural Science Foundation of China (No 20372069 and 20472095), and the Shanghai Basic Research Project from the Shanghai Science and Technology Commission (No 03DZ19212 and 03DZ19228).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Hx., Wang, F., Yu, Kq. et al. Novel cyclophilin D inhibitors derived from quinoxaline exhibit highly inhibitory activity against rat mitochondrial swelling and Ca2+ uptake/release. Acta Pharmacol Sin 26, 1201–1211 (2005). https://doi.org/10.1111/j.1745-7254.2005.00189.x

Download citation

  • Received: 27 April 2005

  • Accepted: 10 June 2005

  • Issue date: 01 October 2005

  • DOI: https://doi.org/10.1111/j.1745-7254.2005.00189.x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • cyclophilin
  • quinoxalines
  • surface plasmon resonance
  • mitochondrial permeability transition
  • fluorescence titration
  • inhibitor

This article is cited by

  • Discovery and molecular basis of subtype-selective cyclophilin inhibitors

    • Alexander A. Peterson
    • Aziz M. Rangwala
    • David R. Liu

    Nature Chemical Biology (2022)

  • Simplified immunosuppressive and neuroprotective agents based on gracilin A

    • Mikail E. Abbasov
    • Rebeca Alvariño
    • Daniel Romo

    Nature Chemistry (2019)

  • Solvatochromic effect on photophysical properties of Quinoxalin-2(1H)-one and 3-Benzylquinoxalin-2(1H)-one

    • R. Jdaa
    • B. Benali
    • B. Lakhrissi

    Optical and Quantum Electronics (2017)

  • Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction

    • Insun Park
    • Ashwini M. Londhe
    • Ae Nim Pae

    Journal of Computer-Aided Molecular Design (2017)

  • Drugs to cure avian influenza infection – multiple ways to prevent cell death

    • S Yuan

    Cell Death & Disease (2013)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • About the Editors
  • Editorial Board
  • About the Partner
  • Contact
  • For Advertisers
  • Subscribe
  • Open Access Fees and Funding

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Acta Pharmacologica Sinica (Acta Pharmacol Sin)

ISSN 1745-7254 (online)

ISSN 1671-4083 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited