Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Acta Pharmacologica Sinica
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. acta pharmacologica sinica
  3. editorials
  4. article
Calcium signaling in physiology and pathophysiology
Download PDF
Download PDF
  • Editorial
  • Published: 01 July 2006

Calcium signaling in physiology and pathophysiology

  • He-ping Cheng1,
  • Sheng Wei1,
  • Li-ping Wei2 &
  • …
  • Alexei Verkhratsky3 

Acta Pharmacologica Sinica volume 27, pages 767–772 (2006)Cite this article

  • 4135 Accesses

  • 34 Citations

  • Metrics details

Abstract

Calcium ions are the most ubiquitous and pluripotent cellular signaling molecules that control a wide variety of cellular processes. The calcium signaling system is represented by a relatively limited number of highly conserved transporters and channels, which execute Ca2+ movements across biological membranes and by many thousands of Ca2+-sensitive effectors. Molecular cascades, responsible for the generation of calcium signals, are tightly controlled by Ca2+ ions themselves and by genetic factors, which tune the expression of different Ca2+-handling molecules according to adaptational requirements. Ca2+ ions determine normal physiological reactions and the development of many pathological processes.

Article PDF

References

  1. Ringer S . A further contribution regarding the influence of different constituents of the blood on the contractions of the heart. J Physiol (Lond) 1883; 4: 29–43.

    Article  CAS  Google Scholar 

  2. Ringer S . The influence of saline media on fishes. J Physiol (Lond) 1883; 4: vi–viii.

    Google Scholar 

  3. Ringer S . Further experiments regarding the influence of small quantities of lime, potassium and other salts on muscular tissue. J Physiol (Lond) 1886; 7: 291–308.

    Article  CAS  Google Scholar 

  4. Ringer S . Concerning experiments to test the influence of lime, sodium and potassium salts on the development of ova and growth of tadpoles. J Physiol (Lond) 1890; 11: 79–84.

    Article  CAS  Google Scholar 

  5. Ringer S, Sainsbury H . The action of potassium, sodium and calcium salts on Tubifex rivulorum. J Physiol (Lond) 1894; 16: 1–9.

    Article  CAS  Google Scholar 

  6. Locke FS . Notiz uber den Einfluss, physiologisher Kochsalzlosung auf die Eregbarkeit von Muscel and Nerve. Zentralb Physiol 1894; 8: 166–7.

    Google Scholar 

  7. Overton E . Beitrage zur allgemeinen Muskel- und Nerven physiologie. III. Mittheilung. Studien uber die Wirkung der Alkali-und Erdkali-salze auf Skeletalmuskeln und Nerven. Pflugers Arch 1904; 105: 176–290.

    Article  CAS  Google Scholar 

  8. Heilbrunn LV . An outline of general physiology. Philadelphia: Saunders; 1943.

    Google Scholar 

  9. Petersen OH, Michalak M, Verkhratsky A . Calcium signalling: past, present and future. Cell Calcium 2005; 38: 161–9.

    Article  CAS  Google Scholar 

  10. Wuytack F, Raeymaekers L, Missiaen L . PMR1/SPCA Ca2+ pumps and the role of the Golgi apparatus as a Ca2+ store. Pflugers Arch 2003; 446: 148–53.

    Article  CAS  Google Scholar 

  11. Vanoevelen J, Dode L, Van Baelen K, Fairclough RJ, Missiaen L, Raeymaekers L, et al. The secretory pathway Ca2+/Mn2+-AT-Pase 2 is a Golgi-localized pump with high affinity for Ca2+ ions. J Biol Chem 2005; 280: 22800–8.

    Article  CAS  Google Scholar 

  12. Vangheluwe P, Raeymaekers L, Dode L, Wuytack F . Modulating sarco(endo)plasmic reticulum Ca2+ ATPase 2 (SERCA2) activity: cell biological implications. Cell Calcium 2005; 38: 291–302.

    Article  CAS  Google Scholar 

  13. Nicholls DG . Mitochondria and calcium signaling. Cell Calcium 2005; 38: 311–7.

    Article  CAS  Google Scholar 

  14. Guerini D, Coletto L, Carafoli E . Exporting calcium from cells. Cell Calcium 2005; 38: 281–9.

    Article  CAS  Google Scholar 

  15. Triggle DJ . L-type calcium channels. Curr Pharm Des 2006; 12: 443–57.

    Article  CAS  Google Scholar 

  16. Parekh AB, Putney JW Jr . Store-operated calcium channels. Physiol Rev 2005; 85: 757–810.

    Article  CAS  Google Scholar 

  17. Perez-Reyes E . Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 2003; 83: 117–61.

    Article  CAS  Google Scholar 

  18. Pedersen SF, Owsianik G, Nilius B . TRP channels: an overview. Cell Calcium 2005; 38: 233–52.

    Article  CAS  Google Scholar 

  19. Bezprozvanny I . The inositol 1,4,5-trisphosphate receptors. Cell Calcium 2005; 38: 261–72.

    Article  CAS  Google Scholar 

  20. Galione A, Ruas M . NAADP receptors. Cell Calcium 2005; 38: 273–80.

    Article  CAS  Google Scholar 

  21. Hamilton SL . Ryanodine receptors. Cell Calcium 2005; 38: 253–60.

    Article  CAS  Google Scholar 

  22. Morad M, Soldatov N . Calcium channel inactivation: possible role in signal transduction and Ca2+ signaling. Cell Calcium 2005; 38: 223–31.

    Article  CAS  Google Scholar 

  23. Burdakov D, Verkhratsky A . Biophysical re-equilibration of Ca2+ fluxes as a simple biologically plausible explanation for complex intracellular Ca2+ release patterns. FEBS Lett 2006; 380: 463–8.

    Article  Google Scholar 

  24. Burdakov D, Petersen OH, Verkhratsky A . Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium 2005; 38: 303–10.

    Article  CAS  Google Scholar 

  25. Berridge MJ, Bootman MD, Roderick HL . Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4: 517–29.

    Article  CAS  Google Scholar 

  26. Petersen OH, Petersen CC, Kasai H . Calcium and hormone action. Annu Rev Physiol 1994; 56: 297–319.

    Article  CAS  Google Scholar 

  27. Burnashev N, Rozov A . Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy. Cell Calcium 2005; 37: 489–95.

    Article  CAS  Google Scholar 

  28. Barclay JW, Morgan A, Burgoyne RD . Calcium-dependent regulation of exocytosis. Cell Calcium 2005; 38: 343–53.

    Article  CAS  Google Scholar 

  29. Jarvis SE, Zamponi GW . Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels. Cell Calcium 2005; 37: 483–8.

    Article  CAS  Google Scholar 

  30. Alonso MT, Barrero MJ, Michelena P, Carnicero E, Cuchillo I, Garcia AG, et al. Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J Cell Biol 1999; 144: 241–54.

    Article  CAS  Google Scholar 

  31. Alvarez J, Montero M . Measuring [Ca2+] in the endoplasmic reticulum with aequorin. Cell Calcium 2002; 32: 251–60.

    Article  CAS  Google Scholar 

  32. Mogami H, Tepikin AV, Petersen OH . Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen. EMBO J 1998; 17: 435–42.

    Article  CAS  Google Scholar 

  33. Solovyova N, Verkhratsky A . Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+] recordings in single rat sensory neurones. Pflugers Arch 2003; 446: 447–54.

    Article  CAS  Google Scholar 

  34. Solovyova N, Veselovsky N, Toescu EC, Verkhratsky A . Ca2+ dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca2+-induced Ca2+ release triggered by physiological Ca2+ entry. EMBO J 2002; 21: 622–30.

    Article  CAS  Google Scholar 

  35. Tse FW, Tse A, Hille B . Cyclic Ca2+ changes in intracellular stores of gonadotropes during gonadotropin-releasing hormone-stimulated Ca2+ oscillations. Proc Natl Acad Sci USA 1994; 91: 9750–4.

    Article  CAS  Google Scholar 

  36. Verkhratsky A . Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 2005; 85: 201–79.

    Article  CAS  Google Scholar 

  37. Mogami H, Nakano K, Tepikin AV, Petersen OH . Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell 1997; 88: 49–55.

    Article  CAS  Google Scholar 

  38. Mogami H, Gardner J, Gerasimenko OV, Camello P, Petersen OH, Tepikin AV . Calcium binding capacity of the cytosol and endoplasmic reticulum of mouse pancreatic acinar cells. J Physiol 1999; 518: 463–7.

    Article  CAS  Google Scholar 

  39. Petersen OH, Tepikin A, Park MK . The endoplasmic reticulum: one continuous or several separate Ca2+ stores? Trends Neurosci 2001; 24: 271–6.

    Article  CAS  Google Scholar 

  40. Verkhratsky A . The endoplasmic reticulum and neuronal calcium signalling. Cell Calcium 2002; 32: 393–404.

    Article  CAS  Google Scholar 

  41. Michalak M, Robert Parker JM, Opas M . Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 2002; 32: 269–78.

    Article  CAS  Google Scholar 

  42. Verkhratsky A, Toescu EC . Endoplasmic reticulum Ca2+ homeostasis and neuronal death. J Cell Mol Med 2003; 7: 351–61.

    Article  CAS  Google Scholar 

  43. Friel DD, Tsien RW . A caffeine- and ryanodine-sensitive Ca2+ store in bullfrog sympathetic neurones modulates effects of Ca2+ entry on [Ca2+]i. J Physiol 1992; 450: 217–46.

    Article  CAS  Google Scholar 

  44. Shmigol A, Kostyuk P, Verkhratsky A . Role of caffeine-sensitive Ca2+ stores in Ca2+ signal termination in adult mouse DRG neurones. Neuroreport 1994; 5: 2073–6.

    Article  CAS  Google Scholar 

  45. Usachev Y, Shmigol A, Pronchuk N, Kostyuk P, Verkhratsky A . Caffeine-induced calcium release from internal stores in cultured rat sensory neurons. Neuroscience 1993; 57: 845–59.

    Article  CAS  Google Scholar 

  46. Hongpaisan J, Pivovarova NB, Colegrove SL, Leapman RD, Friel DD, Andrews SB . Multiple modes of calcium-induced calcium release in sympathetic neurons II: a [Ca2+])- and location-dependent transition from endoplasmic reticulum Ca accumulation to net Ca release. J Gen Physiol 2001; 118: 101–12.

    Article  CAS  Google Scholar 

  47. Albrecht MA, Colegrove SL, Hongpaisan J, Pivovarova NB, Andrews SB, Friel DD . Multiple modes of calcium-induced calcium release in sympathetic neurons I: attenuation of endoplasmic reticulum Ca2+ accumulation at low [Ca2+]i during weak depolarization. J Gen Physiol 2001; 118: 83–100.

    Article  CAS  Google Scholar 

  48. Toescu EC, Verkhratsky A . Neuronal ageing from an intraneuronal perspective: roles of endoplasmic reticulum and mitochondria. Cell Calcium 2003; 34: 311–23.

    Article  CAS  Google Scholar 

  49. Toescu EC . Hypoxia sensing and pathways of cytosolic Ca2+ increases. Cell Calcium 2004; 36: 187–99.

    Article  CAS  Google Scholar 

  50. Toescu EC . Hypoxia response elements. Cell Calcium 2004; 36: 181–5.

    Article  CAS  Google Scholar 

  51. Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, et al. Relaxation of arterial smooth muscle by calcium sparks. Science 1995; 270: 633–7.

    Article  CAS  Google Scholar 

  52. Wellman GC, Nathan DJ, Saundry CM, Perez G, Bonev AD, Penar PL, et al. Ca2+ sparks and their function in human cerebral arteries. Stroke 2002; 33: 802–8.

    Article  CAS  Google Scholar 

  53. Wellman GC, Nelson MT . Signaling between SR and plasmalemma in smooth muscle: sparks and the activation of Ca2+-sensitive ion channels. Cell Calcium 2003; 34: 211–29.

    Article  CAS  Google Scholar 

  54. Paschen W, Mengesdorf T . Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium 2005; 38: 409–15.

    Article  CAS  Google Scholar 

  55. Berliocchi L, Bano D, Nicotera P . Ca2+ signals and death programmes in neurons. Philos Trans R Soc Lond B Biol Sci 2005; 360: 2255–8.

    Article  CAS  Google Scholar 

  56. Leist M, Nicotera P . Apoptosis versus necrosis: the shape of neuronal cell death. Results Probl Cell Differ 1998; 24: 105–35.

    Article  CAS  Google Scholar 

  57. Kristian T . Metabolic stages, mitochondria and calcium in hypoxic/ischemic brain damage. Cell Calcium 2004; 36: 221–33.

    Article  CAS  Google Scholar 

  58. Pringle AK . In, out, shake it all about: elevation of [Ca2+]i during acute cerebral ischaemia. Cell Calcium 2004; 36: 235–45.

    Article  CAS  Google Scholar 

  59. Yao H, Haddad GG . Calcium and pH homeostasis in neurons during hypoxia and ischemia. Cell Calcium 2004; 36: 247–55.

    Article  CAS  Google Scholar 

  60. Starkov AA, Chinopoulos C, Fiskum G . Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 2004; 36: 257–64.

    Article  CAS  Google Scholar 

  61. Pisani A, Bonsi P, Calabresi P . Calcium signaling and neuronal vulnerability to ischemia in the striatum. Cell Calcium 2004; 36: 277–84.

    Article  CAS  Google Scholar 

  62. Yamashima T . Ca2+-dependent proteases in ischemic neuronal death: a conserved ‘calpain-cathepsin cascade’ from nematodes to primates. Cell Calcium 2004; 36: 285–93.

    Article  CAS  Google Scholar 

  63. Kahlert S, Reiser G . Glial perspectives of metabolic states during cerebral hypoxia-calcium regulation and metabolic energy. Cell Calcium 2004; 36: 295–302.

    Article  CAS  Google Scholar 

  64. Mattson MP, Chan SL . Neuronal and glial calcium signaling in Alzheimer's disease. Cell Calcium 2003; 34: 385–97.

    Article  CAS  Google Scholar 

  65. Scoote M, Williams AJ . Myocardial calcium signalling and arrhythmia pathogenesis. Biochem Biophys Res Commun 2004; 322: 1286–309.

    Article  CAS  Google Scholar 

  66. Sipido KR, Eisner D . Something old, something new: changing views on the cellular mechanisms of heart failure. Cardiovasc Res 2005; 68: 167–74.

    Article  CAS  Google Scholar 

  67. Toescu EC, Verkhratsky A . Ca2+ and mitochondria as substrates for deficits in synaptic plasticity in normal brain ageing. J Cell Mol Med 2004; 8: 181–90.

    Article  CAS  Google Scholar 

  68. Verkhratsky A, Toescu EC . Calcium and neuronal ageing. Trends Neurosci 1998; 21: 2–7.

    Article  CAS  Google Scholar 

  69. Toescu EC, Verkhratsky A, Landfield PW . Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci 2004; 27: 614–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Molecular Medicine and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Science, Peking University, Beijing, 100871, China

    He-ping Cheng & Sheng Wei

  2. Center for Bioinformatics, College of Life Science, Peking University, Beijing, 100871, China

    Li-ping Wei

  3. Faculty of Life Sciences, the University of Manchester, Manchester, M13 9PT, UK

    Alexei Verkhratsky

Authors
  1. He-ping Cheng
    View author publications

    Search author on:PubMed Google Scholar

  2. Sheng Wei
    View author publications

    Search author on:PubMed Google Scholar

  3. Li-ping Wei
    View author publications

    Search author on:PubMed Google Scholar

  4. Alexei Verkhratsky
    View author publications

    Search author on:PubMed Google Scholar

Corresponding authors

Correspondence to He-ping Cheng or Alexei Verkhratsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Hp., Wei, S., Wei, Lp. et al. Calcium signaling in physiology and pathophysiology. Acta Pharmacol Sin 27, 767–772 (2006). https://doi.org/10.1111/j.1745-7254.2006.00399.x

Download citation

  • Received: 22 May 2006

  • Accepted: 22 May 2006

  • Issue date: 01 July 2006

  • DOI: https://doi.org/10.1111/j.1745-7254.2006.00399.x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Calcium channel α2δ1 subunit is a functional marker and therapeutic target for tumor-initiating cells in non-small cell lung cancer

    • Yuanyuan Ma
    • Xiaodan Yang
    • Zhiqian Zhang

    Cell Death & Disease (2021)

  • The diverse roles of calcium-binding protein regucalcin in cell biology: from tissue expression and signalling to disease

    • Ricardo Marques
    • Cláudio J. Maia
    • Sílvia Socorro

    Cellular and Molecular Life Sciences (2014)

  • P2X7 Receptor–Pannexin 1 Hemichannel Association: Effect of Extracellular Calcium on Membrane Permeabilization

    • V. Poornima
    • M. Madhupriya
    • Amal Kanti Bera

    Journal of Molecular Neuroscience (2012)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • About the Editors
  • Editorial Board
  • About the Partner
  • Contact
  • For Advertisers
  • Subscribe
  • Open Access Fees and Funding

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Acta Pharmacologica Sinica (Acta Pharmacol Sin)

ISSN 1745-7254 (online)

ISSN 1671-4083 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited