Abstract
The pore-forming alpha subunits of voltage-gated calcium channels contain the essential biophysical machinery that underlies calcium influx in response to cell depolarization. In combination with requisite auxiliary subunits, these pore sub-units form calcium channel complexes that are pivotal to the physiology and pharmacology of diverse cells ranging from sperm to neurons. Not surprisingly, mutations in the pore subunits generate diverse pathologies, termed channelopathies, that range from failures in excitation-contraction coupling to night blindness. Over the last decade, major insights into the mechanisms of pathogenesis have been derived from animals showing spontaneous or induced mutations. In parallel, there has been considerable growth in our understanding of the workings of voltage-gated ion channels from a structure-function, regulation and cell biology perspective. Here we document our current understanding of the mutations underlying channelopathies involving the voltage-gated calcium channel alpha subunits in humans and other species.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Felix R . Molecular regulation of voltage-gated Ca2+ channels. J Recept Signal Transduct Res 2005; 25: 57–71.
Lacinova L . Voltage-dependent calcium channels. Gen Physiol Biophys 2005; 24( Suppl 1): 1–78.
Autret L, Mechaly I, Scamps F, Valmier J, Lory P, Desmadryl G . The involvement of CaV3.2/alpha1H T-type calcium channels in excitability of mouse embryonic primary vestibular neurones. J Physiol 2005; 567( Pt 1): 67–78.
Rizzuto R, Pozzan T . Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 2006; 86: 369–408.
Weick JP, Groth RD, Isaksen AL, Mermelstein PG . Interactions with PDZ proteins are required for L-type calcium channels to activate cAMP response element-binding protein-dependent gene expression. J Neurosci 2003; 23: 3446–56.
Fox AP, Nowycky MC, Tsien RW . Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol 1987; 394: 149–72.
Yaari Y, Hamon B, Lux HD . Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science 1987; 235: 680–2.
Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J . International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005; 57: 411–25.
Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, et al. Nomenclature of voltage-gated calcium channels. Neuron 2000; 25: 533–5.
Mori Y, Friedrich T, Kim MS, Mikami A, Nakai J, Ruth P, et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 1991; 350: 398–402.
Williams ME, Brust PF, Feldman DH, Patthi S, Simerson S, Maroufi A, et al. Structure and functional expression of an ω-conotoxin-sensitive human N-type calcium channel. Science 1992; 257: 389–95.
Williams ME, Feldman DH, McCue AF, Brenner R, Velicelebi G, Ellis SB, et al. Structure and functional expression of α1, α2, and β subunits of a novel human neuronal calcium channel subtype. Neuron 1992; 8: 71–84.
Fujita Y, Mynlieff M, Dirksen RT, Kim M, Niidome T, Nakai J, et al. Primary structure and functional expression of the ω-conotoxin-sensitive N-type calcium channel from rabbit brain. Neuron 1993; 10: 585–98.
Stea A, Dubel SJ, Pragnell M, Leonard JP, Campbell KP, Snutch TP . A β-subunit normalizes the electrophysiological properties of a cloned N-type calcium channel. Neuropharmacology 1993; 32: 1103–16.
Jones OT, Kunze DL, Angelides KJ . Localization and mobility of omega-conotoxin-sensitive Ca2+ channels in hippocampal CA1 neurons. Science 1989; 244: 1189–93.
Westenbroek RE, Ahlijanian MK, Catterall WA . Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 1990; 347: 281–4.
Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA . Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 1992; 9: 1099–15.
Hell JW, Westenbroek RE, Warner C, Ahlijanian MK, Prystay W, Gilbert MM, et al. Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits. J Cell Biol 1993; 123: 949–62.
Haydon PG, Henderson E, Stanley EF . Localization of individual calcium channels at the release face of a presynaptic nerve terminal. Neuron 1994; 13: 1275–80.
Mills LR, Niesen CE, So AP, Carlen PL, Spigelman I, Jones OT . N-type Ca2+ channels are located on somata, dendrites, and a subpopulation of dendritic spines on live hippocampal pyramidal neurons. J Neurosci 1994; 14: 6815–24.
Elliott EM, Malouf AT, Catterall WA . Role of calcium channel subtypes in calcium transients in hippocampal CA3 neurons. J Neurosci 1995; 15: 6433–44.
Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TVB, Snutch TP, et al. Immunochemical identification and subcellular distribution of the α1A subunits of brain calcium channels. J Neurosci 1995; 15: 6403–18.
Johnston D, Magee JC, Colbert CM, Christie BR . Active properties of neuronal dendrites. Annu Rev Neurosci 1996; 19: 165–86.
Klugbauer N, Dai S, Specht V, Lacinova L, Marais E, Bohn G, et al. A family of gamma-like calcium channel subunits. FEBS Lett 2000; 470: 189–97.
Dascal N, Chilcott G, Lester HA . Recording of voltage and Ca2+-dependent currents in Xenopus oocytes using an intracellular perfusion method. J Neurosci Methods 1991; 39: 29–38.
Chen L, Chetkovich DM, Petralla RS, Sweeney NT, Kawasaki Y, Wenthold RJ, et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 2000; 408: 936–43.
Pietrobon D . Calcium channels and channelopathies of the central nervous system. Mol Neurobiol 2002; 25: 31–50.
Gregg RG, Couch F, Hogan K, Powers PA . Assignment of the human gene for the alpha 1 subunit of the skeletal muscle DHP-sensitive Ca2+ channel (CACNL1A3) to chromosome 1q31-q32. Genomics 1993; 15: 107–12.
Garcia J, McKinley K, Appel SH, Stefani E . Ca2+ current and charge movement in adult single human skeletal muscle fibres. J Physiol 1992; 454: 183–96.
Flucher BE, Franzini-Armstrong C . Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle. Proc Natl Acad Sci USA 1996; 93: 8101–6.
Beam KG, Knudson CM, Powell JA . A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature 1986; 320: 168–170.
Chaudhari N . A single nucleotide deletion in the skeletal muscle-specific calcium channel transcript of muscular dysgenesis (mdg) mice. J Biol Chem 1992; 267: 25636–9.
Ptacek LJ, Tawil R, Griggs RC, Engel AG, Layzer RB, Kwiecinski H, et al. Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 1994; 77: 863–8.
Jurkat-Rott K, Lehmann-Horn F, Elbaz A, Heine R, Gregg RG, Hogan K, et al. A calcium channel mutation causing hypokalemic periodic paralysis. Hum Mol Genet 1994; 3: 1415–9.
Elbaz A, Vale-Santos J, Jurkat-Rott K, Lapie P, Ophoff RA, Bady B, et al. Hypokalemic periodic paralysis and the dihydropyridine receptor (CACNL1A3): genotype/phenotype correlations for two predominant mutations and evidence for the absence of a founder effect in 16 caucasian families. Am J Hum Genet 1995; 56: 374–80.
Monnier N, Procaccio V, Stieglitz P, Lunardi J . Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am J Hum Genet 1997; 60: 1316–25.
Stewart SL, Hogan K, Rosenberg H, Fletcher JE . Identification of the Arg1086His mutation in the alpha subunit of the voltage-dependent calcium channel (CACNA1S) in a North American family with malignant hyperthermia. Clin Genet 2001; 59: 178–84.
Wang Q, Liu M, Xu C, Tang Z, Liao Y, Du R, et al. Novel CACNA1S mutation causes autosomal dominant hypokalemic periodic paralysis in a Chinese family. J Mol Med 2005; 83: 203–8.
Sipos I, Jurkat-Rott K, Harasztosi C, Fontaine B, Kovacs L, Melzer W, et al. Skeletal muscle DHP receptor mutations alter calcium currents in human hypokalaemic periodic paralysis myotubes. J Physiol 1995; 483: 299–306.
Lehmann-Horn F, Sipos I, Jurkat-Rott K, Heine R, Brinkmeier H, Fontaine B, et al. Altered calcium currents in human hypokalemic periodic paralysis myotubes expressing mutant L-type calcium channels. Soc Gen Physiol Ser 1995; 50: 101–13.
Marchant CL, Ellis FR, Halsall PJ, Hopkins PM, Robinson RL . Mutation analysis of two patients with hypokalemic periodic paralysis and suspected malignant hyperthermia. Muscle Nerve 2004; 30: 114–7.
Beam KG, Knudson CM, Powell JA . A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature 1986; 320: 168–70.
Sun W, McPherson JD, Hoang DQ, Wasmuth JJ, Evans GA, Montal M . Mapping of a human brain voltage-gated calcium channel to human chromosome 12 p 13-pter. Genomics 1992; 14: 1092–4.
Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci USA 2005; 102: 8089–96.
Rottbauer W, Baker K, Wo ZG, Mohideen MA, Cantiello HF, Fishman MC . Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel al-pha1 subunit. Dev Cell 2001; 1: 265–75.
Zhang Z, He Y, Tuteja D, Xu D, Timofeyev V, Zhang Q, et al. Functional roles of CaV1.3(alpha1D) calcium channels in atria: insights gained from gene-targeted null mutant mice. Circulation 2005 112.
Seino S, Yamada Y, Espinosa R Le Beau MM, Bell GI . Assignment of the gene encoding the alpha 1 subunit of the neuroendocrine/brain-type calcium channel (CACNL1A2) to human chromosome 3, bandp14.3. Genomics 1992 13.
Matthes J, Yildirim L, Wietzorrek G, Reimer D, Striessnig J, Herzig S . Disturbed atrio-ventricular conduction and normal contractile function in isolated hearts from Cav 1.3-knockout mice. Naunyn Schmiedebergs Arch Pharmacol 2004 369.
Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, et al. Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci USA 2003 100.
Wappl E, Mitterdorfer J, Glossmann H, Striessnig J . Mechanism of dihydropyridine interaction with critical binding residues of L-type Ca2+ channel alpha 1 subunits. J Biol Chem 2001; 20; 276: 12730–5.
Sinnegger-Brauns MJ, Hetzenauer A, Huber IG, Renstrom E, Wietzorrek G, Berjukov S, et al. Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca2+channels. J Clin Invest 2004; 113: 1430–9.
Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 2000; 102: 89–97.
Dou H, Vazquez AE, Namkung Y, Chu H, Cardell EL, Nie L, et al. Null mutation of alpha1D Ca2+ channel gene results in deafness but no vestibular defect in mice. J Assoc Res Otolaryngol 2004; 5: 215–26.
Sidi S, Busch-Nentwich E, Friedrich R, Schoenberger U, Nicolson T . gemini encodes a zebrafish L-type calcium channel that localizes at sensory hair cell ribbon synapses. J Neurosci 2004; 24: 4213–23.
Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B, Fishman GA, et al. Loss-of-function mutations in a calcium-channel alpha 1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 1998; 19: 264–7.
Strom TM, Nyakatura G, pfelstedt-Sylla E, Hellebrand H, Lorenz B, Weber BH, et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet 1998; 19: 260–3.
Zeitz C, Minotti R, Feil S, Matyas G, Cremers FP, Hoyng CB, et al. Novel mutations in CACNA1F and NYX in Dutch families with X-linked congenital stationary night blindness. Mol Vis 2005; 11: 179–83.
Wei J, Hemmings GP . A further study of a possible locus for schizophrenia on the X chromosome. Biochem Biophys Res Commun 2006; 344: 1241–5.
Matsushita K, Wakamori M, Rhyu IJ, Arii T, Oda S, Mori Y, et al. Bidirectional alterations in cerebellar synaptic transmission of tottering and rolling Ca2+ channel mutant mice. J Neurosci 2002; 22: 4388–98.
Qian J, Noebels JL . Presynaptic Ca(2+) influx at a mouse central synapse with Ca(2+) channel subunit mutations. J Neurosci 2000; 20: 163–70.
Mintz IM, Sabatini BL, Regehr WG . Calcium control of transmitter release at a cerebellar synapse. Neuron 1995; 15: 675–88.
Wu LG, Westenbroek RE, Borst JGG, Catterall WA, Sakmann B . Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci 1999; 19: 726–36.
Llinas RR, Sugimori M, Cherksey B . Voltage-dependent calcium conductances in mammalian neurons. The P channel. Ann NY Acad Sci 1989; 560: 103–11.
Fletcher CF, Lutz CM, O'Sullivan TN, Shaughnessy JD Jr, Hawkes R, Frankel WN, et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 1996; 87: 607–17.
Noebels JL, Sidman RL . Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science 1979; 204: 1334–6.
Wakamori M, Yamazaki K, Matsunodaira H, Teramoto T, Tanaka I, Niidome T, et al. Single tottering mutations responsible for the neuropathic phenotype of the P-type calcium channel. J Biol Chem 1998; 273: 34857–67.
Zwingman TA, Neumann PE, Noebels JL, Herrup K . Rocker is a new variant of the voltage-dependent calcium channel gene Cacnala. J Neurosci 2001; 21: 1169–78.
Mori Y, Wakamori M, Oda S, Fletcher CF, Sekiguchi N, Mori E, et al. Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg(rol)). J Neurosci 2000; 20: 5654–62.
Noebels JL . The biology of epilepsy genes. Annu Rev Neurosci 2003; 26: 599–625.
Tsuji S, Meier H . Evidence for allelism of leaner and tottering in the mouse. Genet Res 1971; 17: 83–88.
Lorenzon NM, Lutz CM, Frankel WN, Beam KG . Altered calcium channel currents in Purkinje cells of the neurological mutant mouse leaner. J Neurosci 1998; 18: 4482–9.
Dove LS, Abbott LC, Griffith WH . Whole-cell and single-channel analysis of P-type calcium currents in cerebellar Purkinje cells of leaner mutant mice. J Neurosci 1998; 18: 7687–99.
Hess EJ . Migraines in mice? Cell 1996; 87: 1149–51.
Jun K, Piedras-Renteria ES, Smith SM, Wheeler DB, Lee SB, Lee TG, et al. Ablation of P/Q-type Ca2+ channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the a1A -subunit. Proc Natl Acad Sci USA 1999; 96: 15245–50.
Inchauspe CG, Martini FJ, Forsythe ID, Uchitel OD . Functional compensation of P/Q by N-type channels blocks short-term plasticity at the calyx of held presynaptic terminal. J Neurosci 2004; 24: 10379–83.
Miyazaki T, Hashimoto K, Shin HS, Kano M, Watanabe M . P/ Q-type Ca2+ channel alpha 1A regulates synaptic competition on developing cerebellar Purkinje cells. J Neurosci 2004; 24: 1734–43.
Qian J, Noebels JL . Presynaptic Ca2+ influx at a mouse central synapse with Ca2+ channel subunit mutations. J Neurosci 2000; 20: 163–70.
Matsushita K, Wakamori M, Rhyu IJ, Arii T, Oda S, Mori Y, et al. Bidirectional alterations in cerebellar synaptic transmission of tottering and rolling Ca2+ channel mutant mice. J Neurosci 2002; 22: 4388–98.
Caddick SJ, Wang C, Fletcher CF, Jenkins NA, Copeland NG, Hosford DA . Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4lh) and tottering (Cacnalatg) mouse thalami. J Neurophysiol 1999; 81: 2066–74.
Leenders AG van den Maagdenberg AM Lopes da Silva FH, Sheng ZH, Molenaar PC, Ghijsen WE . Neurotransmitter release from tottering mice nerve terminals with reduced expression of mutated P- and Q-type Ca2+-channels. Eur J Neurosci 2002; 15: 13–8.
Zhou YD, Turner TJ, Dunlap K . Enhanced G protein-dependent modulation of excitatory synaptic transmission in the cerebellum of the Ca2+ channel-mutant mouse, tottering. J Physiol 2003; 547: 497–507.
Pagani R, Song M, McEnery M, Qin N, Tsien RW, Toro L, et al. Differential expression of alpha 1 and beta subunits of voltage dependent Ca2+ channel at the neuromuscular junction of normal and P/Q Ca2+ channel knockout mouse. Neuroscience 2004; 123: 75–85.
Diriong S, Lory P, Williams ME, Ellis SB, Harpold MM, Taviaux S . Chromosomal localization of the human genes for alpha-1A, alpha-1B, and alpha-1E voltage-dependent Ca2+ channel subunits. Genomics 1995; 30: 605–9.
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha (1A)-voltage-dependent calcium channel. Nat Genet 1997; 15: 62–9.
Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SMG, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca(2+) channel gene CACNL1A4. Cell 1996; 87: 543–52.
Eunson LH, Graves TD, Hanna MG . New calcium channel mutations predict aberrant RNA splicing in episodic ataxia. Neurology 2005; 65: 308–10.
Imbrici P, Jaffe SL, Eunson LH, Davies NP, Herd C, Robertson R, et al. Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia. Brain 2004; 127; 2682–92.
Kaunisto MA, Harno H, Kallela M, Somer H, Sallinen R, Hamalainen E, et al. Novel splice site CACNA1A mutation causing episodic ataxia type 2. Neurogenetics 2004; 5: 69–73.
Wessman M, Kaunisto MA, Kallela M, Palotie A . The molecular genetics of migraine. Ann Med 2004; 36: 462–73.
Trettel F, Mantuano E, Calabresi V, Veneziano L, Olsen AS, Georgescu A, et al. A fine physical map of the CACNA1A gene region on 19p13.1-p13.2 chromosome. Gene 2000; 241: 45–50.
Kraus RL, Sinnegger MJ, Glossmann H, Hering S, Striessnig J . Familial hemiplegic migraine mutations change alpha(1A)Ca (2+) channel kinetics. J Biol Chem 1998; 273: 5586–90.
Kraus RL, Sinnegger MJ, Koschak A, Glossmann H, Stenirri S, Carrera P, et al. Three new familial hemiplegic migraine mutants affect P/Q-type Ca(2+) channel kinetics. J Biol Chem 2000; 275: 9239–43.
van den Maagdenberg AMJM, Pietrobon D, Pizzorusso T, Kaja S, Broos LAM, Cesetti T, et al. A Cacnala knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 2004; 41: 701–10.
Ducros A, Denier C, Joutel A, Vahedi K, Michel A, Darcel F, et al. Recurrence of the T666M calcium channel CACNA1A gene mutation in familial hemiplegic migraine with progressive cerebellar ataxia. Am J Hum Genet 1999; 64: 89–98.
Ducros A, Denier C, Joutel A, Cecillon M, Lescoat C, Vahedi K, et al. The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. New Engl J Med 2001; 345: 17–24.
Manto MU . The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 2005; 4: 2–6.
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha (1A)-voltage-dependent calcium channel. Nat Genet 1997; 15: 62–9.
Ishikawa K, Tanaka H, Saito M, Ohkoshi N, Fujita T, Yoshizawa K, et al. Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1-p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13.1. Am J Hum Genet 1997 61.
Kordasiewicz HB, Thompson RM, Clark HB, Gomez CM . C-termini of P/Q-type Ca2+channel {alpha} 1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity. Hum Mol Genet 2006; 15: 1587–99.
Jones OT . Ca2+ channels and epilepsy. Eur J Pharmacol 2002; 447: 211–25.
Sander T, Peters C, Janz D, Bianchi A, Bauer G, Wienker TF, et al. The gene encoding the alpha1 A-voltage-dependent calcium channel (CACN1A4) is not a candidate for causing common subtypes of idiopathic generalized epilepsy. Epilepsy Res 1998; 29: 115–22.
Chioza B, Wilkie H, Nashef L, Blower J, McCormick D, Sham P, et al. Association between the alpha–1A calcium channel gene CACNA1A and idiopathic generalized epilepsy. Neurology 2001; 56: 1245–6.
Chioza B, Nashef L, Asherson P, Makoff A . CACNA1A and P/ Q-type calcium channels in epilepsy. Lancet 2002; 359: 258.
Sander T, Toliat MR, Heils A, Becker C, Nurnberg P . Failure to replicate an allelic association between an exon 8 polymorphism of the human alpha(1A) calcium channel gene and common syndromes of idiopathic generalized epilepsy. Epilepsy Res 2002; 49: 173–7.
Jouvenceau A, Eunson LH, Spauschus A, Ramesh V, Zuberi SM, Kullmann DM, et al. G. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 2001; 358: 801–7.
Strupp M, Kalla R, Dichgans M, Freilinger T, Glasauer S, Brandt T . Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology 2004; 62: 1623–5.
Saegusa H, Matsuda Y, Tanabe T . Effects of ablation of N- and R-type Ca(2+) channels on pain transmission. Neurosci Res 2002; 43: 1–7.
Ino M, Yoshinaga T, Wakamori M, Miyamoto N, Takahashi E, Sonoda J, et al. Functional disorders of the sympathetic nervous system in mice lacking the alpha 1B subunit (Cav 2.2) of N-type calcium channels. Proc Natl Acad Sci USA 2001; 98: 5323–8.
Newton PM, Orr CJ, Wallace MJ, Kim C, Shin HS, Messing RO . Deletion of N-type calcium channels alters ethanol reward and reduces ethanol consumption in mice. J Neurosci 2004; 24: 9862–9.
Takei T, Saegusa H, Zong S, Murakoshi T, Makita K, Tanabe T . Increased sensitivity to halothane but decreased sensitivity to propofol in mice lacking the N-type Ca2+ channel. Neurosci Lett 2003; 350: 41–5.
Kamp MA, Krieger A, Henry M, Hescheler J, Weiergraber M, Schneider T . Presynaptic ‘Ca2.3-containing’ E-type Ca channels share dual roles during neurotransmitter release. Eur J Neurosci 2005; 21: 1617–25.
Breustedt J, Vogt KE, Miller RJ, Nicoll RA, Schmitz D . Alpha1 E-containing Ca2+ channels are involved in synaptic plasticity. Proc Natl Acad Sci USA 2003; 100: 12450–5.
Saegusa H, Matsuda Y, Tanabe T . Effects of ablation of N- and R-type Ca(2+) channels on pain transmission. Neurosci Res 2002; 43: 1–7.
Jing X, Li DQ, Olofsson CS . Salehi A, Surve VV, Caballero J, et al. CaV2.3 calcium channels control second-phase insulin release. J Clin Invest 2005; 115: 146–54.
Mittman S, Guo J, Agnew WS . Structure and alternative splicing of the gene encoding alpha 1G, a human brain T calcium channel alpha1 subunit. Neurosci Lett 1999; 274: 143–6.
Yunker AM, Sharp AH, Sundarraj S, Ranganathan V, Copeland TD, McEnery MW . Immunological characterization of T-type voltage-dependent calcium channel CaV3.1 (alpha 1G) and CaV3.3 (alpha 1I) isoforms reveal differences in their localization, expression, and neural development. Neuroscience 2003; 117: 321–35.
Mizuta E, Miake J, Yano S, Furuichi H, Manabe K, Sasaki N, et al. Subtype switching of T-type Ca2+ channels from Cav3.2 to Cav3.1 during differentiation of embryonic stem cells to cardiac cell lineage. Circ J 2005; 69: 1284–9.
Anderson MP, Mochizuki T, Xie J, Fischler W, Manger JP, Talley EM, et al. Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc Natl Acad Sci USA 2005; 102: 1743–8.
Lee J, Kim D, Shin HS . Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking alpha 1G-subunit of T-type calcium channels. Proc Natl Acad Sci USA 2004; 101: 18195–9.
Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K., et al. Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/{alpha}1G T-type calcium channels. Circ Res 2006; 98: 1422–30.
Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, et al. Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res 1998; 83: 103–9.
Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, et al. Silencing of the CaV3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 2005; 24: 239–43.
Chen CC, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, et al. Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 2003; 302: 1416–8.
Stamboulian S, Kim D, Shin HS, Ronjat M, De WM, Arnoult C . Biophysical and pharmacological characterization of spermatogenic T-type calcium current in mice lacking the CaV3.1 (alpha1G) calcium channel: CaV3.2 (alpha1H) is the main functional calcium channel in wild-type spermatogenic cells. J Cell Physiol 2004; 200: 116–24.
Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003; 54: 239–43.
Khosravani H, Altier C, Simms B, Hamming KS, Snutch TP, Mezeyova J, et al. Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem 2004; 279: 9681–84.
Heron SE, Phillips HA, Mulley JC, Mazarib A, Neufeld MY, Berkovic SF, et al. Genetic variation of CACNA1H in idiopathic generalized epilepsy. Ann Neurol 2004; 55: 595–6.
Wolfe JT, Wang H, Howard J, Garrison JC, Barrett PQ . T-type calcium channel regulation by specific G-protein beta-gamma subunits. Nature 2003; 424: 209–13.
Mittman S, Guo J, Emerick MC, Agnew WS . Structure and alternative splicing of the gene encoding alpha–1I, a human brain T calcium channel alpha–1 subunit. Neurosci Lett 1999; 269: 121–4.
Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA . Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 1999; 19: 1895–911.
Perez-Reyes E . Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 2003; 83: 117–61.
Wan J, Khanna R, Sandusky M, Papazian DM, Jen JC, Baloh RW . CACNA1A mutations causing episodic and progressive ataxia alter channel trafficking and kinetics. Neurology 2005; 64: 2090–7.
Hoda JC, Zaghetto F, Koschak A, Striessnig J . Congenital stationary night blindness type 2 mutations S229P, G369D, L1068P, and W1440X alter channel gating or functional expression of Ca(V)1.4 L-type Ca2+ channels. J Neurosci 2005; 25: 252–9.
Hoda JC, Zaghetto F, Singh A, Koschak A, Striessnig J . Effects of congenital stationary night blindness type 2 mutations R508Q and L1364H on CaV1.4 L-type Ca2+ channel function and expression. J Neurochem 2006; 96: 1648–58.
Jacobi FK, Hamel CP, Arnaud B, Blin N, Broghammer M, Jacobi PC, Apfelstedt-Sylla E, Pusch CM . A novel CACNA1F mutation in a french family with the incomplete type of X-linked congenital stationary night blindness. Am J Ophthalmol 2003; 135: 733–6.
Sun W, McPherson JD, Hoang DQ, Wasmuth JJ, Evans GA, Montal M . Mapping of a human brain voltage-gated calcium channel to human chromosome 12 p 13-pter. Genomics 1992; 14: 1092–1094.
Kors EE, Terwindt GM, Vermeulen FL, Fitzsimons RB, Jardine PE, Heywood P, et al. Delayed cerebral edema and fatal coma after minor head trauma: role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann Neurol 2001; 49: 753–60.
Battistini S, Stenirri S, Piatti M, Gelfi C, Righetti PG, Rocchi R, et al. A new CACNA1A gene mutation in acetazolamide-responsive familial hemiplegic migraine and ataxia. Neurology 1999; 53: 38–43.
Vahedi K, Denier C, Ducros A, Bousson V, Levy C, Chabriat H, et al. CACNA1A gene de novo mutation causing hemiplegic migraine, coma, and cerebellar atrophy. Neurology 2000; 55: 1040–2.
Carrera P, Piatti M, Stenirri S, Grimaldi LM, Marchioni E, Curcio M, et al. Genetic heterogeneity in Italian families with familial hemiplegic migraine. Neurology 1999; 53: 26–33.
Gardner K . The genetic basis of migraine: how much do we know? Can J Neurol Sci 1999; 26( Suppl 3): S37–43.
Denier C, Ducros A, Vahedi K, Joutel A, Thierry P, Ritz A, et al. High prevalence of CACNA1A truncations and broader clinical spectrum in episodic ataxia type 2. Neurology 1999; 52: 1816–21.
Scoggan KA, Chandra T, Nelson R, Hahn AF, Bulman DE . Identification of two novel mutations in the CACNA1A gene responsible for episodic ataxia type 2. J Med Genet 2001; 38: 249–53.
Matsuyama Z, Murase M, Shimizu H, Aoki Y, Hayashi M, Hozumi I, et al. A novel insertion mutation of acetazolamide-responsive episodic ataxia in a Japanese family. J Neurol Sci 2003; 210: 91–3.
Yue Q, Jen JC, Thwe MM, Nelson SF, Baloh RW . De novo mutation in CACNA1A caused acetazolamide-responsive episodic ataxia. Am J Med Genet 1998; 77: 298–301.
Friend KL, Crimmins D, Phan TG, Sue CM, Colley A, Fung VS, et al. Detection of a novel missense mutation and second recurrent mutation in the CACNA1A gene in individuals with EA-2 and FHM. Hum Genet 1999; 105: 261–5.
Spacey SD, Hildebrand ME, Materek LA, Bird TD, Snutch TP . Functional implications of a novel EA-2 mutation in the P/Q-type calcium channel. Ann Neurol 2004; 56: 213–20.
Tonelli A, D'Angelo MG, Salati R, Villa L, Germinasi C, Frattini T, et al. Early onset, non fluctuating spinocerebellar ataxia and a novel missense mutation in CACNA1A gene. J Neurol Sci 2006; 241: 13–7.
Jarvis SE, Barr W, Feng ZP, Hamid J, Zamponi GW . Molecular determinants of syntaxin 1 modulation of N-type calcium channels. J Biol Chem 2002; 277: 44399–407.
Wiser O, Bennett MK, Atlas D . Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L- and N-type Ca2+ channels. EMBO J 1996; 15: 4100–10.
Magga JM, Jarvis SE, Arnot MI, Zamponi GW, Braun JE . Cysteine string protein regulates G protein modulation of N-type calcium channels. Neuron 2000; 28: 195–204.
Sheng ZH, Yokoyama CT, Catterall WA . Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. Proc Natl Acad Sci USA 1997; 94: 5405–10.
Maximov A, Sudhof TC, Bezprozvanny I . Association of neuronal calcium channels with modular adaptor proteins. J Biol Chem 1999; 274: 24453–6.
Erickson MG, Alseikhan BA, Peterson BZ, Yue DT . Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron 2001; 31: 973–85.
Strock J, Diverse-Pierluissi MA . Ca2+ channels as integrators of G protein-mediated signaling in neurons. Mol Pharmacol 2004; 66: 1071–6.
Altier C, Dubel SJ, Barrere C, Jarvis SE, Stotz SC, Spaetgens RL, et al. Trafficking of L-type calcium channels mediated by the postsynaptic scaffolding protein AKAP79. J Biol Chem 2002; 277: 33598–603.
Lee D, Obukhov AG, Shen Q, Liu Y, Dhawan P, Nowycky MC, et al. Calbindin-D(28k) decreases L-type calcium channel activity and modulates intracellular calcium homeostasis in response to K(+) depolarization in a rat beta cell line RINr1046–38. Cell Calcium 2006; 39: 475–85.
Hudmon A, Schulman H, Kim J, Maltez JM, Tsien RW, Pitt GS . CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol 2005; 171: 537–47.
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by funds from the Biotechnology and Biological Sciences Research Council UK (No 34/C15752).
Rights and permissions
About this article
Cite this article
Mckeown, L., Robinson, P. & Jones, O. Molecular basis of inherited calcium channelopathies: role of mutations in pore-forming subunits. Acta Pharmacol Sin 27, 799–812 (2006). https://doi.org/10.1111/j.1745-7254.2006.00394.x
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1111/j.1745-7254.2006.00394.x
Keywords
This article is cited by
-
Kalziumkanalopathien des Menschen
Der Nervenarzt (2008)