Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Acta Pharmacologica Sinica
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. acta pharmacologica sinica
  3. original article
  4. article
Natural product juglone targets three key enzymes from Helicobacter pylori: inhibition assay with crystal structure characterization
Download PDF
Download PDF
  • Original Article
  • Published: 01 July 2008

Drug Design

Natural product juglone targets three key enzymes from Helicobacter pylori: inhibition assay with crystal structure characterization

  • Yun-hua Kong1,
  • Liang Zhang1,
  • Zheng-yi Yang1,
  • Cong Han1,
  • Li-hong Hu1,
  • Hua-liang Jiang1 &
  • …
  • Xu Shen1 

Acta Pharmacologica Sinica volume 29, pages 870–876 (2008)Cite this article

  • 2192 Accesses

  • 43 Citations

  • Metrics details

Abstract

Aim:

To investigate the inhibition features of the natural product juglone (5-hydroxy-1,4-naphthoquinone) against the three key enzymes from Helicobacter pylori (cystathionine γ-synthase [HpCGS], malonyl-CoA:acyl carrier protein transacylase [HpFabD], and β-hydroxyacyl-ACP dehydratase [HpFabZ]).

Methods:

An enzyme inhibition assay against HpCGS was carried out by using a continuous coupled spectrophotometric assay approach. The inhibition assay of HpFabD was performed based on the α-ketoglutarate dehydrogenase-coupled system, while the inhibition assay for HpFabZ was monitored by detecting the decrease in absorbance at 260 nm with crotonoyl-CoA conversion to β-hydroxybutyryl-CoA. The juglone/FabZ complex crystal was obtained by soaking juglone into the HpFabZ crystal, and the X-ray crystal structure of the complex was analyzed by molecular replacement approach.

Results:

Juglone was shown to potently inhibit HpCGS, HpFabD, and HpFabZ with the half maximal inhibitory concentration IC50 values of 7.0±0.7, 20±1, and 30±4 μmol/L, respectively. An inhibition-type study indicated that juglone was a non-competitive inhibitor of HpCGS against O-succinyl-L-homoserine (Ki=αKi=24 μmol/L), an uncompetitive inhibitor of HpFabD against malonyl-CoA (αKi=7.4 μmol/L), and a competitive inhibitor of HpFabZ against crotonoyl-CoA (Ki=6.8 μmol/L). Moreover, the crystal structure of the HpFabZ/juglone complex further revealed the essential binding pattern of juglone against HpFabZ at the atomic level.

Conclusion:

HpCGS, HpFabD, and HpFabZ are potential targets of juglone.

Similar content being viewed by others

Helicobacter pylori FabX contains a [4Fe-4S] cluster essential for unsaturated fatty acid synthesis

Article Open access 26 November 2021

Low glucose metabolite 3-phosphoglycerate switches PHGDH from serine synthesis to p53 activation to control cell fate

Article Open access 19 September 2023

Design, synthesis, and evaluation of triazolo[1,5-a]pyridines as novel and potent α‑glucosidase inhibitors

Article Open access 22 May 2025

Article PDF

Abbreviations

IC50:

the half maximal inhibitory concentration

K i :

the dissociation constant for inhibitor binding

CoA:

coenzyme A

ACP:

acyl carrier protein transacylase

PDB:

Protein Data Bank

HO-HxoDH:

D-2-Hydroxyisocaproate dehydrogenase

References

  1. Dubreuil JD, Giudice GD, Rappuoli R . Helicobacter pylori interactions with host serum and extracellular matrix proteins: potential role in the infectious process. Microbiol Mol Biol Rev 2002; 66: 617–29.

    Article  CAS  Google Scholar 

  2. Cover TL, Blaser MJ . Helicobacter pylori infection, a paradigm for chronic mucosal inflammation: pathogenesis and implications for eradication and prevention. Adv Intern Med 1996; 41: 85–117.

    CAS  PubMed  Google Scholar 

  3. Cameron EA, Powell KU, Baldwin L, Jones P, Bell GD, Williams SG . Helicobacter pylori: antibiotic resistance and eradication rates in Suffolk, UK, 1991 2001. J Med Microbiol 2004; 53: 535–8.

    Article  Google Scholar 

  4. Paulsen MT, Ljungman M . The natural toxin juglone causes degradation of p53 and induces rapid H2AX phosphorylation and cell death in human fibroblasts. Toxicol Appl Pharmacol 2005; 209: 1–9.

    Article  CAS  Google Scholar 

  5. Inbaraj JJ, Chignell CF . Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes. Chem Res Toxicol 2004; 17: 55–62.

    Article  CAS  Google Scholar 

  6. Rippmann JF, Hobbie S, Daiber C, Guilliard B, Bauer M, Birk J, et al. Phosphorylation-dependent proline isomerization catalyzed by Pin1 is essential for tumor cell survival and entry into mitosis. Cell Growth Differ 2000; 11: 409–16.

    CAS  PubMed  Google Scholar 

  7. Chao SH, Greenleaf AL, Price DH . Juglone, an inhibitor of the peptidyl-prolyl isomerase Pin1, also directly blocks transcription. Nucleic Acids Res 2001; 29: 767–73.

    Article  CAS  Google Scholar 

  8. Varga Z, Bene L, Pieri C, Damjanovich S, Gaspar R . The effect of juglone on the membrane potential and whole-cell K+ currents of human lymphocytes. Biochem Biophys Res Commun 1996; 218: 828–32.

    Article  CAS  Google Scholar 

  9. Hennig L, Christner C, Kipping M, Schelbert B, Rucknagel KP, Grabley S, et al. Selective inactivation of parvulin-like peptidyl-prolylcis/trans isomerases by juglone. Biochemistry 1998; 37: 5953–60.

    Article  CAS  Google Scholar 

  10. Alice MC, Tannis MJ, Charles DH . Antimicrobial activity of juglone. Phytotherapy Research 1990; 4: 11–4.

    Article  Google Scholar 

  11. Clausen T, Huber R, Prade L, Wahl MC, Messerschmidt A . Crystal structure of Escherichia coli cystathionine gamma-synthase at 1.5 A resolution. EMBO J 1998; 17: 6827–38.

    Article  CAS  Google Scholar 

  12. Soda K . Microbial sulfur amino acids: an overview. Methods Enzymol 1987; 143: 453 9.

    PubMed  Google Scholar 

  13. Aitken SM, Kim DH, Kirsch JF . Escherichia coli cystathionine gamma-synthase does not obey ping-pong kinetics. Novel continuous assays for the elimination and substitution reactions. Biochemistry 2003; 42: 11297–306.

    Article  CAS  Google Scholar 

  14. Wahl MC, Huber R, Prade L, Marinkovic S, Messerschmidt A, Clausen T . Cloning, purification, crystallization, and preliminary X-ray diffraction analysis of cystathionine gamma-synthase from E coli. FEBS Lett 1997; 414: 492–6.

    Article  CAS  Google Scholar 

  15. Salama NR, Shepherd B, Falkow S . Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol 2004; 186: 7926–35.

    Article  CAS  Google Scholar 

  16. Campbell JW, Cronan JE . Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu Rev Microbiol 2001; 55: 305–32.

    Article  CAS  Google Scholar 

  17. White SW, Zheng J, Zhang YM, Rock CO . The structure biology of type II fatty acid biosynthesis. Annu Rev Biochemistry 2005; 74: 791–831.

    Article  CAS  Google Scholar 

  18. Magnuson K, Jackowski S, Rock CO, Cronan JE . Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev 1993; 57: 522–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Williamson IP, Wakil SJ . Studies on the mechanism of fatty acid synthesis. XVII. Preparation and general properties of acetyl coenzyme A and malonyl coenzyme A-acyl carrier protein transacylases. J Biol Chem 1966; 241: 2326–32.

    CAS  PubMed  Google Scholar 

  20. Ruch FE, Vagelos PR . The isolation and general properties of Escherichia coli malonyl coenzyme A-acyl carrier protein transacylase. J Biol Chem 1973; 248: 8086–94.

    CAS  PubMed  Google Scholar 

  21. Verwoert II, Verbree EC, van der Linden KH, Nijkamp HJ, Stuitje AR . Cloning, nucleotide sequence, and expression of the Escherichia coli fabD gene, encoding malonyl coenzyme A-acyl carrier protein transacylase. J Bacteriol 1992; 174: 2851–7.

    Article  CAS  Google Scholar 

  22. Kutchma AJ, Hoang TT, Schweizer HP . Characterization of a Pseudomonas aeruginosa fatty acid biosynthetic gene cluster: purification of acyl carrier protein (ACP) and malonyl-coenzyme A:ACP transacylase (FabD). J Bacteriol 1999; 181: 5498–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mohan S, Kelly TM, Eveland SS, Raetz CR, Anderson MS . An Escherichia coli gene (FabZ) encoding (3R)-hydroxymyristoyl acyl carrier protein dehydrase. Relation to fabA and suppression of mutations in lipid A biosynthesis. J Biol Chem 1994; 269: 32896–903.

    CAS  PubMed  Google Scholar 

  24. Heath RJ, Rock CO . Roles of the FabA and FabZ beta-hydroxyacylacyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J Biol Chem 1996; 271: 27795–801.

    Article  CAS  Google Scholar 

  25. Pillai S, Rajagopal C, Kapoor M, Kumar G, Gupta A, Surolia N . Functional characterization of beta-ketoacyl-ACP reductase (FabG) from Plasmodium falciparum. Biochem Biophys Res Commun 2003; 303: 387–92.

    Article  CAS  Google Scholar 

  26. Sharma SK, Kapoor M, Ramya TN, Kumar S, Kumar G, Modak R, et al. Identification, characterization, and inhibition of Plasmodium falciparum beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ). J Biol Chem 2003; 278: 45661–71.

    Article  CAS  Google Scholar 

  27. Kong YH, Wu DL, Bai HY, Han C, Chen J, Chen LL, et al. Enzymatic characterization and inhibitor discovery of a new cys-tathionine γ-synthase (CGS) from Helicobacter pylori. J Biochem (Tokyo) 2008; 143: 59–68.

    Article  CAS  Google Scholar 

  28. Liu WZ, Han C, Hu LH, Chen KX, Shen X, Jiang HL . Characterization and inhibitor discovery of one novel malonyl-CoA: acyl carrier protein transacylase (MCAT) from Helicobacter pylori. FEBS Lett 2006; 580: 697–702.

    Article  CAS  Google Scholar 

  29. Liu WZ, Luo C, Han C, Peng SY, Yang Y, Yue J, et al. A new beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Helicobacter pylori: molecular cloning, enzymatic characterization, and structural modeling. Biochem Biophys Res Commun 2005; 333: 1078–86.

    Article  CAS  Google Scholar 

  30. Zhang L, Liu WZ, Hu TC, Du L, Luo C, Chen KX, et al. Structural basis for catalytic and inhibitory mechanisms of beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ). J Biol Chem 2008; 283: 5370–9.

    Article  CAS  Google Scholar 

  31. Chen LL, Gui CS, Luo XM, Yang QG, Gunther S, Scandella E, et al. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J Virol 2005; 79: 7095–103.

    Article  CAS  Google Scholar 

  32. Otwinowski Z, Minor W . Methods in Enzymology 1997; 276: 307–26.

  33. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve, et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 1998; 54: 905–21.

    Article  CAS  Google Scholar 

  34. Emsley P, Cowtan K . Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004; 60: 2126–32.

    Article  Google Scholar 

  35. Silver LL . Multi-targeting by monotherapeutic antibacterials. Nat Rev Drug Discov 2007; 6: 41–55.

    Article  CAS  Google Scholar 

  36. Inatsu S, Ohsaki A, Nagata K . Idebenone acts against growth of Helicobacter pylori by inhibiting its respiration. Antimicrob Agents Chemother 2006; 50: 2237–9.

    Article  CAS  Google Scholar 

  37. Park BS, Lee HK, Lee SE, Piao XL, Takeoka GR, Wong RY, et al. Antibacterial activity of Tabebuia impetiginosa Martius ex DC (Taheebo) against Helicobacter pylori. J Ethnopharmacol 2006; 105: 255–62.

    Article  CAS  Google Scholar 

  38. Tasdemir D, Lack G, Brun R, Ruedi P, Scapozza L, Perozzo R . Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids. J Med Chem 2006; 49: 3345–53.

    Article  CAS  Google Scholar 

  39. Wang J, Soisson SM, Young K, Shoop W, Kodali S, Galgoci A, et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 2006; 441: 358–61.

    Article  CAS  Google Scholar 

  40. Delanoue WL . The PyMOL Molecular Graphics System. San Carlos, CA: DelanoScientific, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China

    Yun-hua Kong, Liang Zhang, Zheng-yi Yang, Cong Han, Li-hong Hu, Hua-liang Jiang & Xu Shen

Authors
  1. Yun-hua Kong
    View author publications

    Search author on:PubMed Google Scholar

  2. Liang Zhang
    View author publications

    Search author on:PubMed Google Scholar

  3. Zheng-yi Yang
    View author publications

    Search author on:PubMed Google Scholar

  4. Cong Han
    View author publications

    Search author on:PubMed Google Scholar

  5. Li-hong Hu
    View author publications

    Search author on:PubMed Google Scholar

  6. Hua-liang Jiang
    View author publications

    Search author on:PubMed Google Scholar

  7. Xu Shen
    View author publications

    Search author on:PubMed Google Scholar

Corresponding authors

Correspondence to Li-hong Hu or Xu Shen.

Additional information

This work was supported by the National Natural Science Foundation of China (No 30525024, 20721003, and 90713046).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, Yh., Zhang, L., Yang, Zy. et al. Natural product juglone targets three key enzymes from Helicobacter pylori: inhibition assay with crystal structure characterization. Acta Pharmacol Sin 29, 870–876 (2008). https://doi.org/10.1111/j.1745-7254.2008.00808.x

Download citation

  • Received: 26 February 2008

  • Accepted: 02 April 2008

  • Issue date: 01 July 2008

  • DOI: https://doi.org/10.1111/j.1745-7254.2008.00808.x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • cystathionine γ-synthase
  • malonyl-CoA:acyl carrier protein transacylase
  • β-hydroxyacyl-ACP dehydratase
  • inhibitor type
  • complex structure

This article is cited by

  • A comprehensive review on ethnobotanical, medicinal and nutritional potential of walnut (Juglans regia L.)

    • Munish Sharma
    • Munit Sharma
    • Munish Sharma

    Proceedings of the Indian National Science Academy (2022)

  • Two-weeks repeated-dose oral toxicity study of Pediococcus acidilactici J9 in a mice model

    • Mijung Lee
    • Jin-Young Chung
    • Manho Kim

    BMC Microbiology (2020)

  • A new anti-Helicobacter pylori juglone from Reynoutria japonica

    • Atif Ali Khan Khalil
    • Woo Sung Park
    • Mi-Jeong Ahn

    Archives of Pharmacal Research (2019)

  • Theoretical investigation of the radical scavenging activity of shikonin and acylshikonin derivatives

    • Ruifa Jin
    • Yin Bai

    Journal of Molecular Modeling (2012)

  • Emodin targets the β-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: enzymatic inhibition assay with crystal structural and thermodynamic characterization

    • Jing Chen
    • Liang Zhang
    • Xu Shen

    BMC Microbiology (2009)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • About the Editors
  • Editorial Board
  • About the Partner
  • Contact
  • For Advertisers
  • Subscribe
  • Open Access Fees and Funding

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Acta Pharmacologica Sinica (Acta Pharmacol Sin)

ISSN 1745-7254 (online)

ISSN 1671-4083 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited