Table 2 Univariate and multivariate logistic regression model for predicting LNM

From: Preoperative nomogram for the identification of lymph node metastasis in early cervical cancer

 

Univariate analysis

Multivariate analysis

Variables

Odds ratio (95% CI)

P- value

Odds ratio (95% CI)

P- value

Age, yearsa

0.970 (0.947–0.994)

0.015

0.969 (0.939–0.999)

0.043

BMI, kg m−2a

0.941 (0.859–1.031)

0.193

  

Parity, na

0.857 (0.684–1.074)

0.180

  

FIGO stage

IA2, IB1

1

   

IB2, IIA

4.806 (2.637–8.761)

<0.001

  

Histology

Squamous cell

1

   

Adenocarcinoma

1.329 (0.698–2.530)

0.386

  

Adenosquamous

0.391 (0.049–3.116)

0.375

  

Small cell

2.580 (0.592–11.245)

0.207

  

Squamous vs non-squamous

1.272 (0.701–2.309)

0.429

  

Pretreatment SCC Ag, ng ml−1

1.064 (1.014–1.115)

0.011

  

Pretreatment SCC Ag, ng ml −1 (categorical)

<2

1

<0.001

  

2

5.035 (2.722–9.314)

<0.001

  

2 and <5

4.375 (2.009–9.528)

<0.001

  

5

5.859 (2.640–13.003)

<0.001

  

Tumour size by MRI, cma

1.802 (1.485–2.187)

<0.001

1.584 (1.287–1.951)

<0.001

PM involvement by MRI

Yes

2.375 (1.219–4.627)

0.011

  

LNM by PET/CT

Yes

13.963 (7.230–26.964)

<0.001

9.584 (4.772–19.249)

<0.001

  1. Abbreviations: BMI=body mass index; CI=confidence interval; FIGO=International Federation of Gynecology and Obstetrics; LN=lymph node; LNM=LN metastasis; MRI=magnetic resonance imaging; PET/CT=positron emission tomography/computed tomography; PM=parametrial; SCC Ag=squamous cell carcinoma antigen.
  2. Continuous variable.