Table 2 Performance of logistic regression models of single and multiple candidate biomarkers according to time to diagnosis

From: Testing breast cancer serum biomarkers for early detection and prognosis in pre-diagnosis samples

Time group (years)

Best single marker

AUC of best marker

Best combination (powers for 9 parameters, i1:i9)

AUC of best combination

P -value for AUC

Sens for best combination (Spec>0.95)

0–5 (All)

HSP90A

0.529

(−2; 2; −2; −2; 0; 1; −2; −2; −2)

0.56

0.224

0.096

0–1.15

SLPI

0.533

(1; −1; 2; −2; 0; 2; −2; 1; 2)

0.573

0.203

0.083

1.15–5

PAPPA

0.559

(1; 1; −1; −1; 2; 1; 1; 1; −1)

0.593

0.208

0.042

0–0.5

IGFBP3

0.605

(2; 1; −2; −2; 2; −2; 2; 2; 2)

0.686

0.047

0.179

0.5–1

APOC1

0.601

(0; 1; 2; −1; 1; −1; −2; −2; 2)

0.752

0.007

0.189

1–2

RANTES

0.572

(−2; 2; −2; 2; 2; −1; −2; −1; 2)

0.675

0.08

0.14

2–3

RANTES

0.669

(−2; 2; −1; 2; 1; 2; −2; −2; 1)

0.781

0.048

0.257

3–5

APOC1

0.685

(−1; −2; −2; −2; 1; 1; 1; 2; −2)

0.785

0.06

0.216

  1. Performances are indicated by area under the ROC curve (AUC). For the best combinations, powers are indicated for the formula: (IGFBP3)i1+(RANTES)i2+(OPN)i3+(PAI-1)i4+(SLPI)i5+(HSP90A)i6+(APOC1)i7+(PAPPA)i8+(CA15-3)i9+(Age).