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Peroxisomes protect lymphoma cells from HDAC
inhibitor-mediated apoptosis

Michael S Dahabieh'?, ZongYi Ha'*®, Erminia Di Pietro®®, Jessica N Nichol', Alicia M Bolt'*, Christophe Goncalves',
Daphné Dupéré-Richer’, Filippa Pettersson', Koren K Mann'?*, Nancy E Braverman®, Sonia V del Rincén*' and Wilson H Miller Jr*'2

Peroxisomes are a critical rheostat of reactive oxygen species (ROS), yet their role in drug sensitivity and resistance remains
unexplored. Gene expression analysis of clinical lymphoma samples suggests that peroxisomes are involved in mediating drug
resistance to the histone deacetylase inhibitor (HDACi) Vorinostat (Vor), which promotes ROS-mediated apoptosis. Vor augments
peroxisome numbers in cultured lymphoma cells, concomitant with increased levels of peroxisomal proteins PEX3, PEX11B, and
PMP70. Genetic inhibition of peroxisomes, using PEX3 knockdown, reveals that peroxisomes protect lymphoma cells against
Vor-mediated cell death. Conversely, Vor-resistant cells were tolerant to elevated ROS levels and possess upregulated levels of (1)
catalase, a peroxisomal antioxidant, and (2) plasmalogens, ether glycerophospholipids that represent peroxisome function and
serve as antioxidants. Catalase knockdown induces apoptosis in Vor-resistant cells and potentiates ROS-mediated apoptosis in
Vor-sensitive cells. These findings highlight the role of peroxisomes in resistance to therapeutic intervention in cancer, and provide

a novel modality to circumvent drug resistance.
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Peroxisomes are spherical organelles, which can form de novo
from the endoplasmic reticulum (ER) via the concerted action of
peroxins such as PEX3, 16, and 19, and divide via a fission-
based mechanism, involving the PEX11 gene family."™® These
organelles perform key roles in bile acid, ether phospholipid, and
fatty acid metabolism.*® For instance, peroxisomes perform
B-oxidation of very-long-chain fatty acids into long-chain fatty
acids,®” which are oxidized to completion in neighboring
mitochondria.®~'® Within the peroxisome, p-oxidation generates
reactive oxygen species (ROS) such as hydrogen peroxide
(H205), which is primarily quenched via peroxisomal catalase.
Furthermore, peroxisomes are required for the initial steps of
plasmalogen biosynthesis;* plasmalogens are a class of vinyl-
ether phospholipids, which can serve as sacrificial oxidants."'?
Multiple investigations highlight not only the ability of the
peroxisome to quench self-generated ROS'®' but also ROS
that originates from other organelles.'>'® ROS-generating
organelles include the mitochondria via Bax/Bak activation,'”"18
and ER via the unfolded protein response (UPR).'®

Several chemotherapies trigger dysfunctions in the mito-
chondria and ER, causing apoptosis via overwhelming the cell
with ROS.2%-22 For instance, Vorinostat (Vor), a FDA-approved
histone deacetylase inhibitor (HDACi) used in lymphoma
treatment, has been well documented to trigger macromolecule
degradation  (autophagy),®®> and mitochondrial-mediated
apoptosis via ROS accumulation.?*2% Furthermore, HDACI
treatment of leukemic cells causes HSP90 hyperacetylation,?®
leading to an enhanced UPR, and ROS-mediated apoptosis.?”
Curiously, Vor can restore peroxisomal function in
oligodendrocytes derived from patients with X-linked

adrenoleukodystrophy (ABCD1/2 mutation), an inherited per-
oxisome disorder. Here Vor reverts oligodendrocytes toward
baseline levels of peroxisomal B-oxidation.?® Despite the
potential for Vor to correct defects associated with peroxisomal
disorders,?® a link between Vor (or other therapies) and
peroxisomes in cancer has not been established.

In this work, we provide evidence that acute Vor treatment
induces the expression of peroxisomal proteins, thus increas-
ing peroxisome proliferation in lymphoma model systems.
Also, knockdown of peroxisomes via genetic silencing of
PEXS potentiates Vor-induced ROS-mediated apoptosis. In
cells with acquired resistance to Vor, peroxisome levels are
highly elevated, yet ROS levels, alongside ROS-mediated
damage from other agents such as doxorubixin,?® and H,O,
are kept to a relative minimum. Importantly, knockdown of
PEX3 or catalase overcomes Vor resistance. These data are
further complemented by bioinformatics analyses of lym-
phoma cells from patients who were refractory to HDACI
treatment, wherein a marked elevation of peroxisomal
transcripts, including catalase, is demonstrated. Our findings
demonstrate a role for peroxisomes in resistance to
chemotherapy which could be further explored to develop
adjunctive therapies that abrogate their tumor-promoting
functions.

Results

HDAC inhibition drives peroxisome biogenesis in
lymphoma cell models. Expression of peroxisomal ABC
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transporters PMP70 and ABCD?2 in fibroblasts and oligoden-
dritic cells can be induced by Vor.2®2° We hypothesized that
this regulation could also occur in Vor-treated lymphoma
cells. qPCR analyses of Vor-treated U937, OCI-LY8, and
SU-DHL4 lymphoma cell lines show transcriptional upregula-
tion of peroxisome biogenesis factor PEX3, and of peroxi-
some fission and membrane transporter genes, PEX11B and
PMP70, respectively (Figure 1a). Immunoblots of Vor-treated
samples also show a time-dependent increase in expression
of PEXS, PEX11B, and PMP70 (Figure 1b). The Vor-induced
upregulation of peroxisomal transcripts is further supported
by gene expression analyses of Vor-treated U937 cells and
mined cDNA microarray data of non-lymphocytic cells, such
as the leukemic lines HL-60 and NB4, as well as the breast
cancer cell line MDA-MB-231. Here we observe a marked
increase in the expression of transcripts corresponding to the
gene ontology (GO) term ‘peroxisome organization’
(GO:0007031) (Supplementary Figure S1).

To establish whether the Vor-induced expression of
peroxisomal proteins leads to peroxisome assembly, we
performed immunofluorescence for PMP70 puncta (a peroxi-
some marker) on lymphoma cells treated with and without Vor.
After 12 h of Vor treatment, there is a significant increase in
PMP70 puncta levels, indicating that Vor drives peroxisome
proliferation (Figure 1c¢). A well-characterized function of
peroxisomes is the synthesis of ether lipids, including
plasmalogens.'? Plasmalogens contain a vinyl-ether bond
that is preferentially oxidized compared to their diacyl
phospholipid counterparts, enabling them to act as ‘sacrificial
oxidants’ by potentially protecting other membrane lipids from
oxidation.'” Thus, plasmalogens may be synthesized as an
attempt to ‘quench’ the ROS-inducing effects of Vor. We next
measured plasmalogen ethanolamine (PIsEtn) levels (pmol)
via LC-MS/MS in lymphoma cells in the presence and
absence of Vor.3° Our analyses show that PISEtn levels are
more abundant in U937 cells treated with Vor for 12 h,
compared to vehicle-treated cells (Figure 1d; Supplementary
Figure S1). Specifically, PIsEtn levels of 16:0 (16 carbons at
the sn-1 position with no additional double bonds), 18:0, and
18:1 (18 carbons at the sn-1 position, one additional double
bond) species are increased in Vor-treated versus vehicle-
treated U937 cells (Figure 1d; Supplementary Figure S1).

PEX3 knockdown compromises peroxisome biogenesis
and potentiates HDACi-induced cell death. We next
investigated whether the ability of Vor to generate peroxi-
somes was linked to its ability to induce apoptosis. Cells with
reduced PEX3 have compromised peroxisome biogenesis,!
thus we transfected U937 cells with scrambled siRNA
(siSCR) and siRNAs directed against different regions of
the PEX3 ftranscript (termed siPEX3-1 and siPEX3-2).
Knockdown of PEX3 shows a marked reduction in Vor-
induced peroxisome proliferation, as determined by immuno-
fluorescence analyses of PMP70 puncta (Figure 2a;
Supplementary Figure S2). Furthermore, immunoblot of the
peroxins PEX16 and PEX19 demonstrates that PEX3
knockdown alone is sufficient to compromise peroxisome
biogenesis (Figure 2b; Supplementary Figure S2).3' PEX3
knockdown in lymphoma cells also causes a significant
reduction in cell proliferation compared to control cells
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(Figure 2c). When Vor is added to U937 cells upon PEX3
knockdown, we observe a time-dependent increase in
HO-1 and CL-CASP3, versus Vor-treated siSCR cells
(Figure 2d; Supplementary Figure S2), suggesting that
peroxisomes protect lymphoma cells from accumulating
ROS and Vor-mediated cell death. To further investigate this,
we measured ROS levels using the redox-sensitive fluores-
cent dye, 2',7'-dichlorofluorescin diacetate H2 (DCFDA).%?
Here we observe a significant increase in DCFDA fluores-
cence when comparing siPEX3 to siSCR-transfected cells,
and potentiated fluorescence emission upon Vor addition
(Figure 2e), reminiscent of the trend observed for HO-1 in
Figure 2d.

Control siRNA- and PEX3 siRNA-transfected cells were
also subject to flow cytometric analyses after propidium iodide
(P1) and Annexin V-FITC staining.®® We found an increase in
basal apoptosis in cells transfected with siPEX3 alone
(Figure 2f; Supplementary Figure S2). However, with the
addition of Vor, we observe a further increase in apoptosis
upon PEX3 knockdown, demonstrating an additive effect
(Figures 2d and f; Supplementary Figure S2). Phase contrast
images of PEX3 knockdown cells further support our FACS
analysis (Supplementary Figure S2). Using a second
lymphoma cell line, OCI-LY8, we also observe the greatest
amount of apoptosis upon PEX3 knockdown and Vor
treatment, compared to either treatment alone. (Supple-
mentary Figure S2). These results were further supported by
silencing another peroxisomal biogenesis factor PEX19 in
U937 and OCI-LY8 cell lines (Supplementary Figure S3).
Similar to the effects with PEX3 knockdown, we observe a
potentiation in Vor-induced apoptosis when PEX19 is silenced
in U937 and OCI-LY8 (Supplementary Figure S3). Together,
these data indicate that peroxisomes are promoting the
survival of lymphoma cells, and function to protect lymphoma
cells from Vor-mediated cell death.

HDACI-resistant cells contain elevated levels of peroxi-
somes. We next investigated the role of the peroxisome in
HDACi-resistant cells, using an isogenic model of Vor
resistance we generated from U937 cells, termed B8.%
Peroxisomes are more abundant in B8 cells cultured in Vor,
compared to parental U937 cells (or B8 vehicle), as
determined by an increased number of PMP70 immunofluor-
escent puncta (Figure 3a). This finding was further supported
by observing that B8 cells cultured in Vor express increased
protein levels of PEX3, PEX11B, PMP70, and acyl-CoA
synthetase long-chain family member 1 (ACSL1),%* com-
pared to their parental counterparts and vehicle-cultured B8
(Figure 3b).

Although the above data demonstrate an elevation in
peroxisomes in B8, we next wanted to determine whether
these peroxisomes were functional. Compared to vehicle and
Vor-treated U937 cells, we observe the highest levels of total
cellular PIsEtn in B8 cells (Figure 3c, left). Having profiled 16:0
18:0, and 18:1 PIsEtn levels (Supplementary Figure S4), we
note that Vor-resistant cells contain significantly elevated
levels of cellular PIsEtn 18:1 (Figure 3c, right). We suggest that
the elevated levels of the 18:1 plasmalogen species in B8
serve to protect these cells against Vor-mediated oxidative
damage. The additional double bond at the sn-71 position
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HDAC inhibition drives peroxisome biogenesis in lymphoma model systems. (a) PEX3, PEX11B, and PMP70 mRNA expression profiles relative to vehicle (DMSO)
in Vor-treated U937 (2 uM, 12 h), OCI-LY8 (4 uM, 12 h), and SU-DHL4 (1 uM, 12 h) cells, versus 36B4 (housekeeping control). Graphs represent means + S.E.M. (unpaired
ttest) of N=4 replicates (technical triplicate). (b) Immunoblots of PEX3, PEX11B, PMP70, and f-actin (loading control) for vehicle, and 6 and 12 h Vor-treated cells. (¢) PMP70
immunofluorescence (TO-PRO-3 nuclear stain) in vehicle and Vor-treated (2 uM, 12 h) cells, puncta quantitation on right. Scale bar represents 10 zm. Graph represents
means + S.E.M. (unpaired ttest) of N=2 with 5 images per condition and ~ 5 cells per image. (d) Left: schematic of plasmalogen biosynthesis. 1-O-alkyl Dihydroxyacetone
phosphate (DHAP) is exported to the ER whereby additional enzymatic reactions occur. sn-1and sn-2 denote carbon groups, whereas the head group is shown on bottom. Note:
sn-1 position is larger/bold and colored blue to indicate the plasmalogen species being examined. Right: total PIsEtn levels (pmol) in vehicle and Vor-treated (2 1M, 12 h) U937

cells. Graph represents means + S.E.M. (one-way analysis of variance, Tukey) of N=2 in technical triplicate. *P< 0.05, **P<0.01, and ***P< 0.001
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present in PIsEtn 18:1 could further enhance ROS scaven-
ging, as polyunsaturated fats react with hydroxyl radicals and

terminate as lipid peroxid
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Knockdown of peroxisomes, via PEX3 silencing, over-
comes HDACI resistance. Compromising peroxisome func-
tion cooperates with Vor to induce cell death (Figure 2;
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Figure2 Knockdown of PEX3 compromises peroxisome biogenesis and potentiates Vor-induced cell death. (a) PMP70 immunofluorescence staining (DAPI nuclear stain) of
siSCR and siPEX3-1 vehicle (DMSO) and Vor-treated (2 M, 12 h) U937 cells. Vor was added 72 h post transfection. Graph represents means + S.E.M. (one-way analysis of
variance (ANOVA), Tukey) of N= 3 with 5 images taken per condition and ~ 4 cells per image. Scale bar represents 10 zm. *P< 0.05 and ***P< 0.001. (b) Immunoblot of PEX3,
PEX16, PEX19, and f-actin (loading control) in vehicle, and 6 and 12 h Vor-treated (2 M) U937 cells post siSCR and siPEX3-1 transfection. (c) Growth curves of siSCR and
siPEX3-tranfected U937 cells up to 72 h post transfection. Graph represents means + S.E.M. (two-way ANOVA, Bonferroni) of N=3 (technical triplicate) ***P < 0.001.
(d) Immunoblot of HO-1, CL-CASP3, and $-actin (loading control) in vehicle, and 6 and 12 h Vor-treated (2 ;M) U937 cells. (e) DCFDA relative mean fluorescence intensity (MFI)
in vehicle and Vor-treated (2 zM, 12 h) U937 cells. Graph represents mean + S.E.M. (one-way ANOVA, Tukey) of N=2 (technical triplicate). **P<0.01 and **P<0.001.
(f) Percent apoptotic cells as measured by the sum of PI/Annexin V-FITC double-positive and Annexin V-FITC staining. Vor treatment was 2 M for 18 h. Graph represents
means + S.E.M. (one-way ANOVA, Tukey) of N=3 (technical triplicate). *P< 0.05 and ***P< 0.001

Cell Death and Differentiation



Peroxisomes in HDACi resistance
MS Dahabieh et al

1916

PMP70 puncta per cell

U937 Veh U937 Vor B8 (Vor) B8 (Veh) ue37 U937

f:J WTI

(Vor-resistant U937) (Vor-resistant U937) Veh Vor (Vnr) (th)

b
37 PEX3
kDa
5 i s
@ 8
2 150 S
& 100 ]
2 9
° 50 4 @
uo37 U937 uo37 U937
B " Veh Vor (Vur) Veh Vor (Vcr)
-actin
37 e i -
U937 U937 U937 U937 B8 B8
Veh 6h 12h 18h Veh
Vor
*%k
50
d ?:3 40
@
37 [We—  [PEX3 = %
kD& £
2 20
PEX16 g
= 10
o
- | PEX19 0 _
B8 siSCR B8 siPEX3-1 B8siSCR B8 siPEX3-1
HO-1 Vor Vor
15— | Y-H2AX f —_—
20 - —_
. e W (C|-CASP3
o0
= 15
—— | (-2t 8
37 g
B8 B8 £ 101
siSCR  siPEX3-1 q%
Vor 2 51
0

B8 siSCR B8 siPEX3-1
Vor
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ACSL1, and p-actin (loading control) in vehicle, Vor-treated (2 M) U937 cells at indicated times, and B8 cells cultured in the presence (2 M, 1 week) and absence (DMSO) of Vor.
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Supplementary Figure S2), so we next investigated the
contribution of increased peroxisomes to the resistance
phenotype in B8 cells (Figures 3a—c). PEX3 knockdown in
B8 cells, using either PEX3-1 and PEX3-2 siRNAs, results in
reduced levels of PEX16 and 19, and an increase in HO-1
and CL-CASP3 (versus siSCR; Figure 3d). These data are
further supported by reduced numbers of PMP70 immuno-
fluorescent puncta upon PEX3 knockdown (Figure 3e;
Supplementary Figure S4).

To investigate the role of peroxisome reduction on cell
viability, flow cytometry of Pl and Annexin V-FITC co-stained
cells was performed (Figure 3f; Supplementary Figure S4).
Upon PEX3 knockdown in Vor-resistant B8 cells, we observe
an ~70% increase in cell death (18.92 + 1.022%), compared
to siSCR (11.1 +0.333%), indicating that Vor-resistant cells
are partially dependent on peroxisomes for survival (Figure 3f;
Supplementary Figure S4).

HDACIi-resistant cells possess elevated catalase levels
and effectively sequester H,O,. Considering that Vor
induces apoptosis via ROS accumulation, and B8 cells
survive amidst being cultured in Vor, we next investigated the
effects of acute and chronic Vor treatment on ROS levels. The
generation of ROS in B8 cells was determined via DCFDA
flow cytometric analyses. We show that B8 cells maintain
relatively low ROS levels compared to acute treatment of
Vor-sensitive U937 cells (Figure 4a). This is complemented
by data showing that Vor-treated U937 cells results in
increased expression of HO-1 and yH2AX (ROS-mediated
DNA damage marker), alongside an increase in apoptosis
(CL-PARP), while B8 cells possess low levels of these
cellular stress markers (Figure 4b).

B8 cells maintained in Vor, an ROS-inducing agent, do not
show signs of marked ROS-induced stress (Figure 4b). To
determine how efficiently B8 cells sequester ROS, we
monitored the breakdown of exogenous H,O, with respect to
time, compared to vehicle and Vor-treated U937 cells. Upon
addition of H,O, to U937 and B8 cells, we observe an
increased rate of H,O, breakdown in B8 cells, while no
changes were found in Vor-treated U937 compared to vehicle
(Figure 4c). We further support that Vor-resistant cells are
better able to decompose ROS via monitoring the effect on cell
viability from the addition of increasing doses of H,O, This
results in relatively minimal cell death in B8 cells, yet
pronounced cell death in parental U937 cells (Figure 4d).

Peroxisomes are important in promoting the survival of Vor-
resistant cells and their resistance to ROS-induced cell death.
Thus, we hypothesized that cells with acquired resistance to
Vor bypass ROS-induced cell death by expressing a perox-
isomal enzyme that functions to counteract oxidative stress.
Catalase is the most abundant peroxisomal antioxidant
enzyme, thus we examined its expression in B8 cells
compared to vehicle and Vor-treated U937. B8 cells possess
a high level of catalase mRNA, while Vor treatment of U937
cells does not result in changes in catalase expression
(Figure 4e). Immunoblots confirm that catalase levels are
more abundant in B8 cells, compared to vehicle or Vor-treated
U937 cells (Figure 4f). These findings are complemented by
catalase immunofluorescence, which shows the highest level

Peroxisomes in HDACi resistance
MS Dahabieh et al

of puncta in B8 cells and no increase in puncta upon Vor
treatment of U937 cells (Figure 4g; Supplementary Figure S5).

Catalase knockdown partially overcomes HDACI resis-
tance. Next, we genetically knocked down catalase in U937
and B8 cells and profiled the rate of H,O, decomposition in
both systems. B8 cells transfected with siSCR display a rate
of decomposition ~4.5-fold greater than B8 cells transfected
with catalase siRNA (Figure 5a). Catalase is largely
responsible for catalyzing the decomposition of H,O, to
water and oxygen,®” and B8 cells compared to their parental
counterparts are relatively resistant to ROS-induced cell
death in a catalase-dependent manner (Supplementary
Figure S5). Therefore, we examined ROS-mediated damage
and apoptosis markers upon catalase knockdown. Here we
observe that catalase knockdown in B8 cells induces
ROS-mediated damage (HO-1, yH2AX) and triggers apopto-
sis, as seen by increased CL-CASPS3 levels (Figure 5b;
Supplementary Figure S6). Upon catalase knockdown in Vor-
resistant B8 cells, we observe an increase in apoptosis
(16.97 + 0.36%), compared to siSCR (10.97 +0.81%), indi-
cating that Vor-resistant cells are in part reliant on catalase for
survival (Figures 5¢ and d; Supplementary Figure S6).
Furthermore, in Vor-treated U937 and OCI-LY8 cells we
measured apoptosis via Pl and Annexin V-FITC co-stain and
found that catalase knockdown potentiates apoptosis
(Supplementary Figure S7).

HDACIi-refractory patients possess elevated peroxisome
levels. The above data suggest that we might exploit the
dependence on peroxisomal redox proteins as a means of
delaying or circumventing resistance to ROS-inducing
chemotherapies.

To further address this, we examined peroxisomal transcript
expression of purified lymphocytes isolated from biopsies of
DLBCL patients who were treated with the HDACi panobino-
stat. We performed a gene set enrichment analysis (GSEA),*®
which examines the expression of multiple genes correspond-
ing to ontology pathways across two data sets; in this case
HDACi responders versus non-responders. Using this
approach, we analyzed the cDNA levels of transcripts
corresponding to the KEGG term ‘peroxisome’ (map 04146)
in patients who were refractory versus responsive to HDACI.
Specifically, the map consists of 78 genes, of which 49 were
detectable upon filtering a restricted set of ~10 000 expres-
sion probes. Expression profiles of HDACI-refractory to
-responsive patients produced an enrichment score of 0.45
(positive correlation), and false discovery rate (FDR) g-value of
0.09, with 30 of the 49 genes possessing a core enrichment
(Figure 6a). Peroxisomal genes associated with fatty acid
metabolism such as HSD17B4 (multifunctional enzyme type
2), PECR (peroxisomal trans-2-enoyl-CoA reductase), ECI2
(enoyl-CoA delta isomerase 2) and acetylation, and CRAT
(carnitine O-acetyltransferase) are amongst the top 5% of
enriched genes. Importantly, 3 of the 4 peroxisomal genes
involved in plasmalogen synthesis, FAR1 and FARZ2 (fatty
acyl-CoA reductase 1 and 2) and GNPAT (glyceronepho-
sphate O-acyltransferase) are amongst those with a high
running enrichment score. CAT (catalase) is amongst the top
15% of all detectable genes amongst HDACi-refractory
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patients (Figure 6b). The HDACI panobinostat is subject to
different kinetics and metabolism than vorinostat.3® However,
we show that similar to Vor, panobinostat drives the production
of peroxisomal components and it potentiates apoptosis upon
PEX3 knockdown (Supplementary Figure S8). Furthermore,
compared to U937 cells, B8 cells are not only cross-resistant
to panobinostat®® but also express the highest amounts of
peroxisomal proteins when cultured in panobinostat

(Supplementary Figure S8).

From our in vitro and patient-derived data, we
propose a model whereby peroxisomes can be therap-
eutically downregulated to potentiate cell death in lymphoma,
and forestall or overcome chemotherapy resistance
(Figure 6c). When PEX3 is knocked down in HDACI-
sensitive cells treated with Vor, less peroxisomes are
present, ROS damage increases, and cell death is poten-
tiated. When catalase is knocked down, this results in
increased ROS and again a potentiation of Vor-induced cell
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respectively

death (Figure 6c¢). B8 cells, resistant to Vor, have the highest
levels of functional peroxisomes, and maintain low levels of
ROS. When PEX3 is knocked down, peroxisome levels
decrease and cells undergo apoptosis. Upon catalase
knockdown, B8 cells possess a reduced ability to quench
Vor-induced (and exogenous) ROS, resulting in cell death
(Figure 6c).
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Discussion

We provide a comprehensive analysis of the cyto-protective
function of peroxisomes in lymphoma by demonstrating that
either reducing peroxisome number (PEX3 knockdown) or
function (CAT knockdown) can potentiate Vor-mediated cell
death and overcome Vor resistance. In the clinical setting,
lymphomas that are refractory to HDACi show a gene



signature that reflects the presence of increased peroxisome
function. We hypothesize that this group of patients may show
increased sensitivity to drugs that compromise peroxisome
numbers or function.

Vor can induce the formation of peroxisomes, and we
speculate that this may occur via a post-transcriptional
mechanism. HDACi do not exclusively operate at the
transcriptional level via targeting HDACs,*® but can also
induce the acetylation of non-histone proteins.?® Specifically,
lysine acetylation of proteins can enhance their stability, by
opposing the effects of proteasome-targeted ubiquitination.*'
Zhao et al.*? observed that cellular metabolism is largely
regulated by protein acetylation, with virtually every enzyme
associated with fatty acid metabolism shown to be acetylated
in human liver tissue. Throughout fatty acid metabolism
(oxidation), peroxisomes generate acetyl-CoA,*® which
serves as a substrate for acetyltransferases, resulting in lysine
acetylation.***® Peroxisomes contain CRAT,*® which could
acetylate peroxisomal matrix and membrane proteins in
addition to carnitine. Thus, the mechanism by which HDACi
regulate peroxisome abundance remains an area of current
investigation in our lab.

HDACi treatment promotes peroxisome abundance. To
demonstrate what role (increased) peroxisomes have in the
cell we show that compromising peroxisome biogenesis and
function potentiates Vor-induced apoptosis (Figures 2,3,5, and
6; Supplementary Figures S2—-S8). Per the de novo biogen-
esis model, peroxisome formation begins with PEX3, or
PEX16 budding from the ER and interacting with
PEX19.*”*8 This is followed by expansion of the peroxisomal
membrane and import of peroxisomal matrix proteins, result-
ing in a mature peroxisome.*®*° Curiously, upon acute Vor
treatment of U937 cells we do not observe increases in ACSL1
and catalase (Figures 3b and 4e-—g). This leads us to
hypothesize that peroxisome production in response to acute
Vor treatment is an insufficient attempt to salvage the pro-
apoptotic effect of the drug. However, with acquired resistance
to Vor, we put forth that peroxisomes protect drug resistant
cancer cells from ROS damage via engaging two antioxidant
mechanisms: (1) upregulating catalase; and (2) increasing the
levels of plasmalogens (PIsEtn). Interestingly, B8 cells
possess levels of PIsEtn 16:0 and 18:0 that are not
significantly different than those in Vor-treated U937 cells
(Supplementary Figure S4). However, the overall significant
increase in total cellular PIsEtn in B8 versus Vor-treated U937
is attributed to elevated levels of 18:1 PIsEtn in B8 (Figure 3c).
The relative abundance of this species may cause the
downregulation of other plasmalogens such as PIsEtn 16:0
and 18:0 that could be less-effective ROS sinks due to lack of
an additional unsaturated bond.

The data we present here using cell models of lymphoma is
supported in the clinical setting. We show that the GSEA of the
peroxisome KEGG pathway ranks 13th of the 59 enriched
(145 total) KEGG pathways in HDACi-refractory patients
(Supplementary Table S1), and serves as a predictor of
sensitivity versus de novo resistance to HDACi (Figures 6a
and b). Specifically, in refractory versus responsive patients,
three of four peroxisomal genes involved in plasmalogen
synthesis, GNPAT, FAR1, and FAR2 are amongst those with a
positive core enrichment (Figure 6b). Thus, we propose that
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blood biopsies could be used to assess circulating plasmalo-
gens as a less-invasive diagnostic tool than tumor biopsies to
monitor the acquisition of resistance or response to HDACI.
This approach may not be far off the horizon, as plasmalogen
levels in blood are already measured in certain diseases.
Reduced plasmalogen levels in erythrocyte membranes are a
diagnostic marker for the peroxisome biogenesis disorders,
Zellweger spectrum and rhizomelic chondrodysplasia punc-
tata. Investigations of Alzheimer's patients have shown
reductions in their blood plasmalogen levels that correlate
with the progression of their neurological disease.®>2 In the
case of patients with lymphoma that are treated with HDACi,
an increase from baseline in blood 18:1 PIsEtn levels, a
surrogate marker for peroxisome proliferation, would be
predicted to correlate with developing resistance to HDACI.

Finally, we have previously shown that mutations in myocyte
enhancer factor 2B (MEF2B) were significantly associated
with response to panobinostat.’® As MEF2B can bind
HDACs,>* we were interested in testing whether any correla-
tion exists between MEF2B mutational status and peroxisomal
components. To this end, we interrogated our microarray data
using GSEA and found that peroxisome signatures are
enriched in the MEF2B wild-type patients (Supplementary
Table S2). However, we only captured four MEF2B mutant
tumors in our gene expression data set, of which only two
responded to HDACi (Supplementary Table S2).

The role of peroxisomes in cancer and their contribution to
therapy-resistant disease is waiting to be unveiled. Peroxi-
somes have a key role in cellular metabolism,>® and
considering that a defining feature of cancer is metabolic
dysregulation,®® elucidating the role of this critical metabolic
organelle may help better understand the disease. Our data
suggest that the design of compounds that target peroxisomes
in cancer may be a worthy endeavor and should be tested in
combination with existing chemotherapies and targeted
therapies.

Materials and Methods

Cell culture. U937, SU-DHL4, OCI-LY8, and B8 (Vor-resistant derived from
U937) cells were maintained at cell densities ranging from 300 000 to 750 000 cells/
ml in 75cm? vented flasks (Corning, Tewksbury, MA, USA) with 1640 RPMI
(Wisent, Saint-Jean-Baptiste, QC, Canada), 10%(v/v) FBS (Wisent) and 0.5% (v/v)
penicillin/streptomycin (Wisent). SU-DHL4, U937, and OCI-LY8 cells were treated
with 1, 2, and 4 uM Vor (Cayman chemicals, Ann Arbor, MI, USA), respectively,
while B8 cells were constantly maintained in 2 xM Vor.

qPCR. Cultured cells were pelleted and RNA was isolated using the standard
procedure of the TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA).
RNAs were then quantitated using a NanoDrop spectrophotometer (Thermo Fisher
Scientific) and 1 ug of RNA was reverse transcribed using the iScript cDNA
synthesis kit (Bio-Rad, Hercules, CA, USA) and PTC-100 thermocycler (Bio-Rad).
RT-gPCR reactions were prepared using SYBR Green real-time PCR master mix
(Applied Biosystems, Foster City, CA, USA), and samples (400 nM primer duplex)
were run using a 7500 Fast Real-Time PCR system (Applied Biosystems). MIQE
guidelines were followed for RT-gPCR with the primer sequences (IDT, Coralville, IA,
USA),% standard curve slopes, efficiencies (%), and RP-values as follows: CAT
(forward 5’-GGTAACCCAGTAGGAGACAA-3', reverse 5-CGAGATCCCAGTTACC
ATCTT-3', slope —3.247, 103.24%, RP=0.996); PEX3 (forward 5'-GCCTTAA
TGCAGCAACTGAA-3, reverse 5'-AGCTTGTTTGAAGGCCTGTT-3', slope — 3.37,
98.052%, R*=0.994); PEX11B (forward 5-GTAACTCAGCAGATGCCCTT-3,
reverse  5-GCTCGATTGAGGTGACTAACA-3', slope —3.442, 92.936%,
RP =0.945); PMP70 (forward 5'-CGAGCATGATGGCCTACTT-3', reverse 5'-TTT
GCTCAGTTATTGTCATCTTACC-3, slope —3.316, 100.04%, R?=0.997); 36B4
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(forward 5"-TCCTCGTGGAAGTGACATCGT-3, reverse 5-CTGTCTTCCCTGGG
CATCA-3', slope — 3.37, 98.052%, F2=0.994).

Immunoblots. Proteins from cell extracts were lysed in AMPK buffer (50 mM
Tris-HCI, pH 7.4, 5 mM sodium fluoride, 5 mM sodium pyrophosphate, 1 mM EDTA,
1mM EGTA, 250 mM mannitol, 1% v/v Tritox X-100, with protease and
phosphatase inhibitors added fresh). Lysates were sonicated for 4 s at 50% power
using a sonic dismembranator model 500 (Thermo Fisher Scientific). Acrylamide
(19:1 acrylamide/bis) gels were run in SDS glycine running buffer (pH 8.3), with 5%
stacking, and 8, 10, or 12% resolving gels, until adequate ladder (Kaleidoscope,
Bio-Rad) separation was obtained. Proteins were then transferred onto
polyvinylidene fluoride membranes (Roche, Laval, QC, Canada), blocked with 5%
skim milk in 1x TBST, and probed overnight at 4 °C with the following primary
antibodies: Pex3 (Sigma, HPA042830); Pex11B (Abcam, Cambridge, UK,
AB181066); PMP70 (Abcam, AB3421); Pex16 (Proteintech, Rosemont, IL, USA,
14816-1-AP); Pex19 (Abcam, 130372); HO-1 (Santa Cruz, Dallas, TX, USA, sc-
10789); CL-CASP3 (Cell Signaling, Danvers, MA, USA, 9661); yH2AX (Cell
Signaling, 2595); CL-PARP (Cell Signaling, 9541); ACSL1 (Cell Signaling, 9189);
Catalase (Cell Signaling, 12980); and f-actin (Sigma, St. Louis, MO, USA, A5441).
Membranes were briefly rinsed in 1x TBST then washed twice for 15 min in 1x
TBST, followed by 1h room temperature (RT) incubation with mouse IgG
(GE Healthcare, Little Chalfont, UK) or rabbit IgG (GE Healthcare) secondary
antibodies (1/3000 dilution) in 5% skim milk/1 x TBST. Membranes were then
washed as mentioned for primary incubation. A chemiluminescence signal was
produced via incubation with Amersham (GE Healthcare) or Immobilon (Millipore,
Billerica, MA, USA) ECL western blot detection kit which was visualized using X-ray
films (Thermo Fisher Scientific).

Immunofluorescence. A total of 750 000 cells were centrifuged at 100 x g for
5 min (media was aspirated and cells were washed twice in 1 ml of cold 1x PBS.
Cell pellets were then resuspended in 200 pl of cold 1x PBS and 20 ul was
dropped onto a cell suspension glass slide, then via a cytospin device (Hettich,
Tuttlingen, Germany), centrifuged at 100 x g for 5 min. Samples were left to dry for
~20 min, and surrounding areas were circled with a wax pen. Cells were then fixed
in 4% PFA for 20 min, then washed three times with 1x PBS for 5 min at RT. Cell
membranes were then permeabilized using 0.2% Triton X-100 for 10 min in 1x
PBS, then washed in 1x PBS as mentioned above. Slides were then blocked with
10% BSA/1x PBS for 1h at RT and incubated with primary antibodies (1/800
catalase and 1/600 PMP70) in 2% BSA/1x PBS overnight at 4 °C in a humid
chamber. Following incubation, cells were washed three times with 1x PBS for
5 min at RT, and incubated with 1:250 rabbit 594 (Invitrogen, Carlsbad, CA, USA)
and 1:250 mouse 488 (Invitrogen) secondary antibodies for 1 h at RT in a humid,
dark chamber. Slides were then washed three times with 1x PBS at RT for 5 min,
followed by incubation with 1:1000 TO-PRO or DAPI nuclear stain for 15 min in 1 x
PBS. Cells were then washed 3 x with 1x PBS, for 5 min each wash and mounted
using ProLong gold mounting media (Life Technologies, Carlshbad, CA, USA). Glass
coverslips were added on top and sealed with nitrocellulose-based lacquer. Slides
were stored in the dark (4 °C) until viewing under a DM IL LED (Leica, Wetzlar,
Germany) microscope and images were captured via an Infinity3 (Lumenera,
Sarasota, FL, USA) camera. Coloring of images was performed using FIJI software
(FJI, Bethesda, MD, USA).

LC-MS/MS analysis of plasmalogen detection. Authentic standards of
plasmalogens were purchased from Avanti Polar Lipids, Inc (Alabaster, Al, USA).
The tetradeuterated internal standard lyso-PAF C-16-d, was purchased from
Cayman Chemical Co (Ann Arbor, MI, USA). HPLC-grade solvents (methanol,
acetonitrile, chloroform, and water) and ammonium acetate were purchased from
Thermo Fisher Scientific. Formic acid was purchased from Sigma-Aldrich (St. Louis,
MO, USA). PBS was purchased from Thermo Fisher Scientific. Cell pellets were
homogenized in PBS. An extraction solution of methanol containing 10 ng of the
internal standards 16:0-D4 lyso-PAF (20.65 pmol) was added to 50 ug protein cell
extract in a glass tube. The samples were incubated on a shaker at room
temperature for 1h. The samples were transferred to Corning Costar spin-X
centrifuge tube filters (VWR, Radnor, PA, USA) and centrifuged for 5 min. The
filtrates were then transferred to autosampler Verex vials (Phenomenex, Torrance,
CA, USA) for analysis by LC-MS/MS.

A Waters (Brossard, QC, Canada) TQD interfaced with an Acquity UPLC system
was used for positive ion electrospray (ESI)-MS/MS ionization. Plasmalogen species
were detected by monitoring multiple reaction monitoring transitions representing
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fragmentation of [M+H]+ species to m/z 311, 339, 361, 385, 389, and 390 for
compounds with 16:1, 18:1, 20:4. 22:6, 22:4, and 18:0, respectively, at the sn-2
position. Chromatographic resolution was achieved via the use of a 2.1 x50 mm,
1.7 um Waters Acquity UPLC BEH column. The solvent systems used were as
follows: mobile phase A = 54.5% water/45% acetonitrile/0.5% formic acid; and mobile
phase B =99.5% acetonitrile/0.5% formic acid with both solutions containing 2 mM
ammonium acetate. Injections of extracts were made with initial solvent conditions of
85% mobile phase A/15% mobile phase B. The gradient used was from 15 to 100%
mobile phase B over a period of 2.5 min, held at 100% mobile phase B for 1.5 min
before reconditioning the column back to 85% mobile phase A/15% mobile phase B
for 1 min at a solvent rate of 0.7 ml/min. A column temperature of 35 °C and an
injection volume of 5 ul were used.

Flow cytometry-based assays. All flow cytometry experiments were
conducted on the LSRFortessa (BD Biosciences, San Jose, CA, USA). Cells were
initially centrifuged at 100 x g for 5 min, washed twice in 1x PBS, with 5 min spins
at 100x g, then stained with 5uM H,-DCFDA (Sigma) for 30 min at 37 °C.
Following staining, cells were washed twice in 1x PBS and resuspended in
0.25 pg/ml PI (Sigma). A minimum of 10 000 gated events were collected per run
and reads were performed within 45 min of collecting. For sub Gy population
detection, see Dupéré-Richer et al2® For apoptosis detection of non-fixed cells, P/
FITC-Annexin V kit (BD Pharmingen, San Jose, CA, USA) was used with 300 000
cells/tube, 1.5 ul of FITC-Annexin V, and 0.25 g of Pl, in 1x binding buffer.

Transient siRNA knockdowns. A total of 2x 10° cells for each condition
were centrifuged at 100 x g, washed twice in PBS, and resuspended in 100 ul of
solution containing 100 mM NayHPO,, 9.375mM KCI, and 13.75 mM MgCl,
(pH 7.75), placed in 2mM gap electroporation cuvettes (Harvard Apparatus,
Holliston, MA, USA) followed by addition of 10 ul siRNA (stocks at 100 uM).
Cuvettes were then electroporated using program W-001 (U937 and B8) and X-001
(OCI-LY8) via the Amaxa Nucleofector device (Lonza, Basel, Switzerland), and
contents were placed into six-well dishes with 5 ml of pre-warmed (37 °C) 1640
RPMI, 10% FBS, and 0.5% P/S. After overnight incubation, cells were spun down at
100x g, media were aspirated, and resuspended in fresh RPMI as above.
Equimolar amounts of scrambled negative control DsiRNA (IDT) was used for all
transfections. The PEX3-1 siRNA duplex (IDT): 5’-rArCrUrGrCrArArArCrU
rGrArArUrGrGrArUrCrUrGrUrCrCrGrUrUr-3'  and  5’-rCrGrGrArCrArGrArUrCrCrAr
UrUrCrArGrUrUrUrGrCrAGT-3'. The PEX3-2 siRNA duplex sequence (IDT): 5'-
rGrArUrCrUrGrArArGrArUrAArUrArArGrUrUrUrCrArCAA-3" and 5'-rUrUrGrUrGrAr
ArArCrUrUrArUrUrArUrCrUrUrCrArGrArUrCrCrU-3'. PEX19-1 duplex sequence
(IDT): 5’-rGrUrGrArArCrArGrUrGrUrCrUrGrArUrCrArUrGrUrGrAAA-3" and 5'-rUrUr
UrCrArCrArUrGrArUrCrArGrArCrArCrUrGrUrUrCrArCrCrA-3'.  PEX19-2  duplex
sequence (IDT): 5’- rGrArUrArUrGrArCrCrUrCrCrCrArArCrArArGrArArUrUCA-3/
and 5'-rUrGrArArUrUrCrUrUrGrUrUrGrGrGrArGrGrUrCrArUrArUrCrArC-3'.  CAT-1
siRNA duplex sequence (IDT): 5'-rArCrCrArArCrUrGrGrGrArUrGrArGrArGrGr
GrUrArGrUrCrCrUrU-3'  and  5'-rGrGrArCrUrArCrCrCrUrCrUrCrArUrCrCrCrArGr
UrUrGGT-3'. CAT-2 siRNA duplex sequence (IDT): 5'-rArUrUrUrGrGrArGrCrAr
CrCrArCrCrCrUrGrArUrUrGrUrCrCUG-3’ and 5'- rGrGrArCrArArUrCrArGrGrGrUr
GrGrUrGrCrUrCrCrArAAT-3'.

H,0, decomposition assay. One million cells were centrifuged at 100 x g
for 5 min, washed twice in 1x PBS and pulsed for 4s at 50 W in a sonic
dismembranator model 500 (Thermo Fisher Scientific) in 100 ul 1x PBS (without
inhibitors). Samples were then quantitated via the Bradford method and 10 pg of
protein extract was placed in 1 ml 1 x PBS, and used as a blank in 1 cm path length
quartz cuvettes. For each condition, 5 ul of 3% (v/v) H,O, (Sigma) was added to
each cuvette and the absorbance at 240 nm (over the course of 60-120 s) was
read on a DU 700 UV-VIS spectrophotometer (Beckman Coulter, Brea, CA, USA).
Change in moles of H,O, was calculated using Beer's law, AA= ¢ACl, with AA as
absorbance, ¢ as extinction coefficient (43.6 M “Tem~"H0, ), C as concentration
(M), and / as path length (cm). The change in concentration was determined
and then multiplied by the volume in the cuvette to calculate the change in moles
of HoOs.

Gene set enrichment analysis. GSEAs (GSEA v2.2.4, San Diego, CA,
USA) were performed on the samples from the Q-CROC2 clinical trial in diffuse
large B-cell lymphoma testing the efficacy of the deacetylase inhibitor
panobinostat.* We profiled gene expression data from responders and non-
responders looking for enrichment in KEGG pathways (using c2.cp.kegg.v6.0.



symbols curated data set). Using this unbiased approach, we found that of
the 145 pathways, 59 were enriched in non-responders and 86 were enriched in
responders. Supplementary Table S1 shows that in non-responders 2 pathways had
an FDR <25% and a nominal P-value of <1%. Seven pathways had a nominal
P-value of <5%. There were 16 pathways with an FDR <25% in responders, 7
with @ nominal P-value <1% and 15 with a nominal P-value of <5%.

GSEA was also performed comparing MEF2B wild-type and mutant DLBCL
samples for enrichment in peroxisome pathways (Supplementary Table S2). These
pathways were enriched in wild-type MEF2B expressing DLBCL, although only
expression data were available on only four MEF2B mutant samples.

Statistical analyses. For comparisons of two groups (e.g., U937 versus B8)
and one variable (e.g., PMP70 puncta) the Students ttest was used (paired,
two-tailed). In comparing more than two groups (e.g., U937+-Vor and B8) with one
variable (e.g., catalase puncta) to each other, a one-way ANOVA was performed
with Tukey's comparison of all groups. For more than two groups and multiple
variables (e.g., 16:0 PIsEtn and 18:1 PIsEtn) a two-way ANOVA with Bonferroni
post-test was used. Prism software Graphpad 5.0 (Graphpad Software, La Jolla,
CA, USA) was used to conduct all statistical tests.

Data availability. The data presented in this study are available from the
authors upon request.
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