Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hypoxia-induced human endonuclease G expression suppresses tumor growth in a xenograft model

Abstract

We have developed a hypoxia-inducible gene therapy approach for the expression of the mature form of human endonuclease G to facilitate cell death in hypoxic regions of the tumor. The chimeric therapeutic gene is placed under the control of a hypoxia response element based promoter and contains a translocation motif linked in frame to an oxygen-dependent degradation domain and the endonuclease G gene. Transient expression of the chimeric therapeutic gene in breast and prostate cancer cell lines resulted in efficient cell death under hypoxia-mimetic conditions. Stable MDA-MB-435 cells expressing the chimeric therapeutic gene under 1% O2 showed an increase in stable HIF-1α protein levels and synthesis of the endonuclease G protein in a time-dependent manner. In normoxic conditions, these stable transgenic cells exhibited no change in growth rate, invasion and motility when compared to parental cells. Moreover, xenografts generated using the transgenic cells exhibited highly significant suppression of tumor growth in a preclinical cancer model compared to the parental cell line. Thus, the hypoxia-modulated endonuclease G expression has the potential to be used as a gene-based-therapy system to kill malignant cells within hypoxic regions of tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sartorelli AC . Therapeutic attack of hypoxic cells of solid tumors: presidential address. Cancer Res 1988; 48: 775–778.

    CAS  PubMed  Google Scholar 

  2. Ahn GO, Brown M . Targeting tumors with hypoxia-activated cytotoxins. Front Biosci 2007; 12: 3483–3501.

    Article  CAS  PubMed  Google Scholar 

  3. Boast K, Binley K, Iqball S, Price T, Spearman H, Kingsman S et al. Characterization of physiologically regulated vectors for the treatment of ischemic disease. Hum Gene Ther 1999; 10: 2197–2208.

    Article  CAS  PubMed  Google Scholar 

  4. Binley K, Iqball S, Kingsman A, Kingsman S, Naylor S . An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer. Gene Ther 1999; 6: 1721–1727.

    Article  CAS  PubMed  Google Scholar 

  5. Koshikawa N, Takenaga K, Tagawa M, Sakiyama S . Therapeutic efficacy of the suicide gene driven by the promoter of vascular endothelial growth factor gene against hypoxic tumor cells. Cancer Res 2000; 60: 2936–2941.

    CAS  PubMed  Google Scholar 

  6. Zhao HC, Zhang Q, Yang Y, Lu MQ, Li H, Xu C et al. p53-expressing conditionally replicative adenovirus CNHK500-p53 against hepatocellular carcinoma in vitro. World J Gastroenterol 2007; 13: 683–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu J, Harada H, Ogura M, Shibata T, Hiraoka M . Adenovirus-mediated hypoxia-targeting cytosine deaminase gene therapy enhances radiotherapy in tumour xenografts. Br J Cancer 2007; 96: 1871–1878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jeong CH, Lee YM, Choi KS, Seong YR, Kim YJ, Im DS et al. Hypoxia-responsive element-mediated soluble Tie2 vector exhibits an anti-angiogenic activity in vitro under hypoxic condition. Int J Oncol 2005; 26: 211–216.

    CAS  PubMed  Google Scholar 

  9. Harada H, Kizaka-Kondoh S, Hiraoka M . Mechanism of hypoxia-specific cytotoxicity of procaspase-3 fused with a VHL-mediated protein destruction motif of HIF-1alpha containing Pro564. FEBS Lett 2006; 580: 5718–5722.

    Article  CAS  PubMed  Google Scholar 

  10. Koshikawa N, Takenaga K . Hypoxia-regulated expression of attenuated diphtheria toxin A fused with hypoxia-inducible factor-1alpha oxygen-dependent degradation domain preferentially induces apoptosis of hypoxic cells in solid tumor. Cancer Res 2005; 65: 11622–11630.

    Article  CAS  PubMed  Google Scholar 

  11. Stockmann C, Fandrey J . Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression. Clin Exp Pharmacol Physiol 2006; 33: 968–979.

    Article  CAS  PubMed  Google Scholar 

  12. Ke Q, Costa M . Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006; 70: 1469–1480.

    Article  CAS  PubMed  Google Scholar 

  13. Tan M, Gu Q, He H, Pamarthy D, Semenza GL, Sun Y . SAG/ROC2/RBX2 is a HIF-1 target gene that promotes HIF-1a ubiquitination and degradation. Oncogene 2008; 27: 1404–1411.

    Article  CAS  PubMed  Google Scholar 

  14. Schafer P, Scholz SR, Gimadutdinow O, Cymerman IA, Bujnicki JM, Ruiz-Carrillo A et al. Structural and functional characterization of mitochondrial EndoG, a sugar non-specific nuclease which plays an important role during apoptosis. J Mol Biol 2004; 338: 217–228.

    Article  CAS  PubMed  Google Scholar 

  15. van Loo G, Schotte P, van Gurp M, Demol H, Hoorelbeke B, Gevaert K et al. Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ 2001; 8: 1136–1142.

    Article  CAS  PubMed  Google Scholar 

  16. Li LY, Luo X, Wang X . Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001; 412: 95–99.

    Article  CAS  PubMed  Google Scholar 

  17. Basnakian AG, Apostolov EO, Yin X, Abiri SO, Stewart AG, Singh AB et al. Endonuclease G promotes cell death of non-invasive human breast cancer cells. Exp Cell Res 2006; 312: 4139–4149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoshida A, Pommier Y, Ueda T . Endonuclease activation and chromosomal DNA fragmentation during apoptosis in leukemia cells. Int J Hematol 2006; 84: 31–37.

    Article  CAS  PubMed  Google Scholar 

  19. Hamada M, Sumi T, Iwai S, Nakazawa M, Yura Y . Induction of endonuclease G-mediated apopotosis in human oral squamous cell carcinoma cells by protein kinase C inhibitor safingol. Apoptosis 2006; 11: 47–56.

    Article  CAS  PubMed  Google Scholar 

  20. Raman V, Artemov D, Pathak AP, Winnard Jr PT, McNutt S, Yudina A et al. Characterizing vascular parameters in hypoxic regions: a combined magnetic resonance and optical imaging study of a human prostate cancer model. Cancer Res 2006; 66: 9929–9936.

    Article  CAS  PubMed  Google Scholar 

  21. Hillemann A, Brandenburg B, Schmidt U, Roos M, Smirnow I, Lemken ML et al. Protein transduction with bacterial cytosine deaminase fused to the TLM intercellular transport motif induces profound chemosensitivity to 5-fluorocytosine in human hepatoma cells. J Hepatol 2005; 43: 442–450.

    Article  CAS  PubMed  Google Scholar 

  22. Winnard Jr PT, Kluth JB, Raman V . Noninvasive optical tracking of red fluorescent protein-expressing cancer cells in a model of metastatic breast cancer. Neoplasia 2006; 8: 796–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Havlicek LL, Crain RD . Practical Statistics for the Physical Sciences. American Chemical Society: Washington, DC, 1988.

    Google Scholar 

  24. Oess S, Hildt E . Novel cell permeable motif derived from the PreS2-domain of hepatitis-B virus surface antigens. Gene Ther 2000; 7: 750–758.

    Article  CAS  PubMed  Google Scholar 

  25. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY . Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 2004; 22: 1567–1572.

    Article  CAS  PubMed  Google Scholar 

  26. Robinson CR, Sauer RT . Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proc Natl Acad Sci USA 1998; 95: 5929–5934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arai R, Wriggers W, Nishikawa Y, Nagamune T, Fujisawa T . Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering. Proteins 2004; 57: 829–838.

    Article  CAS  PubMed  Google Scholar 

  28. Crabtree HG, Cramer W . The action of radium on cancer cells. II. – Some factors determining susceptibility of cancer cells to radium. Proc Roy Soc Lon B 1933; 113: 238–250.

    Article  CAS  Google Scholar 

  29. Gray LH . Radiobiologic basis of oxygen as a modifying factor in radiation therapy. Am J Roentgen, Rad Therapy, Nuc Med 1961; 85: 803–815.

    CAS  Google Scholar 

  30. Moulder JE, Rockwell S . Tumor hypoxia: its impact on cancer therapy. Cancer Metast Rev 1987; 5: 313–341.

    Article  CAS  Google Scholar 

  31. Cowen RL, Williams KJ, Chinje EC, Jaffar M, Sheppard FCD, Telfer BA et al. Hypoxia targeted gene therapy to increase the efficacy of tirapazamine as an adjuvant to radiotherapy: reversing tumor radioresistance and effecting cure. Cancer Res 2004; 64: 1396–1402.

    Article  CAS  PubMed  Google Scholar 

  32. Harada H, Kizaka-Kondoh S, Itasaka S, Shibuya K, Morinibu A, Shinomiya K et al. The combination of hypoxia-response enhancers and an oxygen-dependent proteolytic motif enables real-time imaging of absolute HIF-1 activity in tumor xenografts. Biochem Biophys Res Commun 2007; 360: 791–796.

    Article  CAS  PubMed  Google Scholar 

  33. Harada H, Hiraoka M, Kizaka-Kondoh S . Antitumor effect of TAT-oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Cancer Res 2002; 62: 2013–2018.

    CAS  PubMed  Google Scholar 

  34. Burgos JS, Rosol M, Moats RA, Khankaldyyan V, Kohn DB, Nelson Jr MD et al. Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice. BioTechniques 2003; 34: 1184–1188.

    Article  CAS  PubMed  Google Scholar 

  35. Ignowski JM, Schaffer DV . Kinetic analysis and modeling firefly luciferase as a quantitative reporter gene in live mammalian cells. Biotech Bioeng 2004; 86: 827–834.

    Article  CAS  Google Scholar 

  36. Li C, Winnard Jr PT, Takagi T, Artemov D, Bhujwalla ZM . Multimodal image-guided enzyme/prodrug cancer therapy. J Am Chem Soc 2007; 128: 15072–15073.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant P50 CA103175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Raman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winnard, P., Botlagunta, M., Kluth, J. et al. Hypoxia-induced human endonuclease G expression suppresses tumor growth in a xenograft model. Cancer Gene Ther 15, 645–654 (2008). https://doi.org/10.1038/cgt.2008.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/cgt.2008.39

Keywords

Search

Quick links