Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interferon-β lipofection I. Increased efficacy of chemotherapeutic drugs on human tumor cells derived monolayers and spheroids

Abstract

We evaluated the effect of hIFNβ gene transfer alone or in combination with different antineoplastic drugs commonly used in cancer treatment. Five human tumor-derived cell lines were cultured as monolayers and spheroids. Four cell lines (Ewing sarcomas EW7 and COH, melanoma M8 and mammary carcinoma MCF-7) were sensitive to hIFNβ gene lipofection. Although this effect appeared in both culture configurations, spheroids showed a relative multicellular resistance (insensitive colon carcinoma HT-29 excluded). EW7 and M8 hIFNβ-expressing cells were exposed to different concentrations of bleomycin, bortezomib, carboplatin, doxorubicin, etoposide, methotrexate, paclitaxel and vincristine in both configuration models. In chemotherapy-sensitive EW7 monolayers, the combination of hIFNβ gene and antineoplastic drugs displayed only additive or counteractive (methotrexate) effects, suggesting that cytotoxic mechanisms triggered by hIFNβ gene lipofection could be saturating the signaling pathways. Conversely, in chemotherapy-resistant EW7 spheroids or M8 cells, the combination of hIFNβ with drugs that mainly operate at the genotoxic level (doxorubicin, methotrexate and paclitaxel) presented only additive effects. However, drugs that also increase pro-oxidant species can complement the antitumor efficacy of the hIFNβ gene and clearly caused potentiated effects (bleomycin, bortezomib, carboplatin, etoposide and vincristine). The great bystander effect induced by hIFNβ gene lipofection could be among the main causes of its effectiveness, because only 1 or 2% of EW7 or M8 hIFNβ-expressing cells killed more than 60 or 80% of cell population, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kurzrock R, Talpaz M, Gutterman JU . Hairy cell leukaemia: review of treatment. Br J Haematol 1991; 79: 17–20.

    Article  PubMed  Google Scholar 

  2. Gutterman JU . Cytokine therapeutics: lessons from interferon alpha. Proc Natl Acad Sci USA 1994; 91: 1198–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Borden EC . Gene regulation and clinical roles for interferons in neoplastic diseases. Oncologist 1998; 3: 198–203.

    CAS  PubMed  Google Scholar 

  4. Talpaz M . Interferon-alfa-based treatment of chronic myeloid leukemia and implications of signal transduction inhibition. Semin Hematol 2001; 38: 22–27.

    Article  CAS  PubMed  Google Scholar 

  5. Sherwin SA, Knost JA, Fein S, Abrams PG, Foon KA, Ochs JJ et al. A multiple-dose phase I trial of recombinant leukocyte A interferon in cancer patients. JAMA 1982; 248: 2461–2466.

    Article  CAS  PubMed  Google Scholar 

  6. Wadler S, Schwartz EL . Antineoplastic activity of the combination of interferon and cytotoxic agents against experimental and human malignancies: a review. Cancer Res 1990; 50: 3473–3486.

    CAS  PubMed  Google Scholar 

  7. Daponte A, Ascierto PA, Gravina A, Lelucci MT, Palmieri G, Comella P et al. Cisplatin, dacarbazine, and fotemustine plus interferon alpha in patients with advanced malignant melanoma. A multicenter phase II study of the Italian Cooperative Oncology Group. Cancer 2000; 89: 2630–2636.

    Article  CAS  PubMed  Google Scholar 

  8. Atzpodien J, Neuber K, Kamanabrou D, Fluck M, Brocker EB, Neumann C et al. Combination chemotherapy with or without s.c. IL-2 and IFN-alpha: results of a prospectively randomized trial of the Cooperative Advanced Malignant Melanoma Chemoimmunotherapy Group (ACIMM). Br J Cancer 2002; 86: 179–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salmon P, Le Cotonnec JY, Galazka A, Abdul-Ahad A, Darragh A . Pharmacokinetics and pharmacodynamics of recombinant human interferon-beta in healthy male volunteers. J Interferon Cytokine Res 1996; 16: 759–764.

    Article  CAS  PubMed  Google Scholar 

  10. Finocchiaro LME, Villaverde MS, Gil Cardeza ML, Riveros MD, Glikin GC . Cytokine-enhanced vaccine and interferon-β plus suicide gene as combined therapy for spontaneous canine sarcomas. Res Vet Sci 2011; 91: 230–234.

    Article  CAS  PubMed  Google Scholar 

  11. Matsumoto K, Kubo H, Murata H, Uhara H, Takata M, Shibata S et al. A pilot study of human interferon beta gene therapy for patients with advanced melanoma by in vivo transduction using cationic liposomes. Jpn J Clin Oncol 2008; 38: 849–856.

    Article  PubMed  Google Scholar 

  12. Yoshida J, Mizuno M, Wakabayashi T . Interferon-β gene therapy for cancer: basic research to clinical application. Cancer Sci 2004; 95: 858–865.

    Article  CAS  PubMed  Google Scholar 

  13. Papageorgiou A, Kamat A, Benedict WF, Dinney C, McConkey DJ . Combination therapy with IFN-alpha plus bortezomib induces apoptosis and inhibits angiogenesis in human bladder cancer cells. Mol Cancer Ther 2006; 5: 3032–3041.

    Article  CAS  PubMed  Google Scholar 

  14. Shieh GS, Shiau AL, Yo YT, Lin PR, Chang CC, Tzai TS et al. Low-dose etoposide enhances telomerase-dependent adenovirus-mediated cytosine deaminase gene therapy through augmentation of adenoviral infection and transgene expression in a syngeneic bladder tumor model. Cancer Res 2006; 66: 9957–9966.

    Article  CAS  PubMed  Google Scholar 

  15. Deharvengt S, Rejiba S, Wack S, Aprahamian M, Hajri A . Efficient electrogene therapy for pancreatic adenocarcinoma treatment using the bacterial purine nucleoside phosphorylase suicide gene with fludarabine. Int J Oncol 2007; 30: 1397–1406.

    CAS  PubMed  Google Scholar 

  16. Abaza MS, Al-Saffar A, Al-Sawan S, Al-Attiyah R . c-myc antisense oligonucleotides sensitize human colorectal cancer cells to chemotherapeutic drugs. Tumour Biol 2008; 29: 287–303.

    Article  CAS  PubMed  Google Scholar 

  17. Fandy TE, Shankar S, Srivastava RK . Smac/DIABLO enhances the therapeutic potential of chemotherapeutic drugs and irradiation, and sensitizes TRAIL-resistant breast cancer cells. Mol Cancer 2008; 7: 60.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fridlender ZG, Sun J, Singhal S, Kapoor V, Cheng G, Suzuki E et al. Chemotherapy delivered after viral immunogene therapy augments antitumor efficacy via multiple immune-mediated mechanisms. Mol Ther 2010; 18: 1947–1959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Finocchiaro LME, Bumaschny VF, Karara AL, Fiszman GL, Casais CC, Glikin GC . Herpes simplex virus thymidine kinase/ganciclovir system in multicellular tumor spheroids. Cancer Gene Ther 2004; 11: 333–345.

    Article  CAS  PubMed  Google Scholar 

  20. Gil Cardeza ML, Villaverde MS, Fiszman GL, Altamirano NA, Cwirenbaum RA, Glikin GC et al. Suicide gene therapy on spontaneous canine melanoma: correlations between in vivo tumors and their derived multicell spheroids in vitro. Gene Therapy 2010; 17: 26–36.

    Article  CAS  PubMed  Google Scholar 

  21. Sancéau J, Poupon MF, Delattre O, Sastre-Garau X, Wietzerbin J . Strong inhibition of Ewing tumor xenograft growth by combination of human interferon-alpha or interferon-beta with ifosfamide. Oncogene 2002; 21: 7700–7709.

    Article  PubMed  Google Scholar 

  22. Gnjatic S, Cai Z, Viguier M, Chouaib S, Guillet JG, Choppin J . Accumulation of the p53 protein allows recognition by human CTL of a wild-type p53 epitope presented by breast carcinomas and melanomas. J Immunol 1998; 160: 328–333.

    CAS  PubMed  Google Scholar 

  23. Finocchiaro LME, Glikin GC . Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma. Gene Therapy 2008; 15: 267–276.

    Article  CAS  PubMed  Google Scholar 

  24. Casais CC, Karara AL, Glikin GC, Finocchiaro LME . Effects of spatial configuration on tumor cells transgene expression. Gene Ther Mol Biol 2006; 10: 207–222.

    Google Scholar 

  25. Felgner JH, Kumar R, Sridhar CN, Wheeler CJ, Tsai YJ, Border R et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 1994; 269: 2550–2561.

    CAS  PubMed  Google Scholar 

  26. Gao X, Huang L . Cationic liposome-mediated gene transfer. Gene Therapy 1995; 2: 710–722.

    CAS  PubMed  Google Scholar 

  27. Friedrich J, Eder W, Castaneda J, Doss M, Huber E, Ebner R et al. A reliable tool to determine cell viability in complex 3-d culture: the acid phosphatase assay. J Biomol Screen 2007; 12: 925–937.

    Article  CAS  PubMed  Google Scholar 

  28. Bradford MM . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  29. Li S, Wilkinson M, Xia X, David M, Xu L, Purkel-Sutton A et al. Induction of IFN-regulated factors and antitumoral surveillance by transfected placebo plasmid DNA. Mol Ther 2005; 11: 112–119.

    Article  PubMed  Google Scholar 

  30. Boyd M, Mairs SC, Stevenson K, Livingstone A, Clark AM, Ross SC et al. Transfectant mosaic spheroids: a new model for evaluation of tumour cell killing in targeted radiotherapy and experimental gene therapy. J Gene Med 2002; 4: 567–576.

    Article  CAS  PubMed  Google Scholar 

  31. Kostarelos K, Emfietzoglou D, Papakostas A, Yang WH, Ballangrud A, Sgouros G . Binding and interstitial penetration of liposomes within avascular tumor spheroids. Int J Cancer 2004; 112: 713–721.

    Article  CAS  PubMed  Google Scholar 

  32. Huang G, Chen Y, Lu H, Cao X . Coupling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon-beta and retinoic acid-induced cancer cell death. Cell Death Differ 2007; 14: 327–337.

    Article  CAS  PubMed  Google Scholar 

  33. Kagan VE, Bayir HA, Belikova NA, Kapralov O, Tyurina YY, Tyurin VA et al. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med 2009; 46: 1439–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burger RM . Cleavage of nucleic acids by bleomycin. Chem Rev 1998; 98: 1153–1170.

    Article  CAS  PubMed  Google Scholar 

  35. Husain K, Whitworth C, Somani SM, Rybak LP . Carboplatin-induced oxidative stress in rat cochlea. Hearing Res 2001; 159: 14–22.

    Article  CAS  Google Scholar 

  36. Kagan VE, Kuzmenko AI, Tyurina YY, Shvedova AA, Matsura T, Yalowich JC . Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells. Cancer Res 2001; 61: 7777–7784.

    CAS  PubMed  Google Scholar 

  37. Olszewska-Słonina DM, Styczyñski J, Czajkowski R, Drewa TA, Musiałkiewicz D . Cell cycle, melanin contents and apoptosis processes in B16 and Cloudman S91 mouse melanoma cells after exposure to cytostatic drugs. Acta Pol Pharm 2007; 64: 469–478.

    PubMed  Google Scholar 

  38. Du ZX, Zhang HY, Meng X, Guan Y, Wang HQ . Role of oxidative stress and intracellular glutathione in the sensitivity to apoptosis induced by proteasome inhibitor in thyroid cancer cells. BMC Cancer 2009; 9: 56.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Villaverde MS, Gil-Cardeza ML, Glikin GC, Finocchiaro LME . Mechanisms involved in cell death and bystander effect induced by cationic lipid mediated interferon-β gene transfer to human tumor cells. Cancer Gene Ther 2012; 19: 420–430.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Susanna Kevra for critical reading of the manuscript, Dr Juana Wietzerbin for EW7 and COH cells, and Ana Bihary and Graciela Zenobi for technical assistance. This study was partially supported by grants from ANPCYT/FONCYT (PICT 2002-12084 and PICT 2007-00539) and UBA (PID-UBACYT-2008/2010-M027). GCG and LMEF are investigators, and MSV and MLG-C are fellows of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L M E Finocchiaro.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villaverde, M., Gil-Cardeza, M., Glikin, G. et al. Interferon-β lipofection I. Increased efficacy of chemotherapeutic drugs on human tumor cells derived monolayers and spheroids. Cancer Gene Ther 19, 508–516 (2012). https://doi.org/10.1038/cgt.2012.27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/cgt.2012.27

Keywords

This article is cited by

Search

Quick links