Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Development of measles virus-based shielded oncolytic vectors: suitability of other paramyxovirus glycoproteins

Abstract

Antibody-mediated neutralization may interfere with the efficacy of measles virus (MV) oncolysis. To circumvent vector neutralization, we sought to exchange the envelope glycoproteins, hemagglutinin (H) and fusion (F), with those from the non-crossreactive Tupaia paramyxovirus (TPMV). To sustain efficient particle assembly, we generated hybrid glycoproteins with the MV cytoplasmic tails and the TPMV ectodomains. Hybrid F proteins that partially retained fusion function, and hybrid H proteins that retained fusion support activity, were generated. However, when used in combination, the hybrid proteins did not support membrane fusion. An alternative strategy was developed based on a hybrid F protein and a truncated H protein that supported cell–cell fusion. A hybrid virus expressing these two proteins was rescued, and was able to spread by cell fusion; however, it was only capable of producing minimal amounts of particles. Lack of specific interactions between the matrix and the H protein, in combination with suboptimal F-protein processing and inefficient glycoprotein transport in the rescue cells, accounted for inefficient particle production. Ultimately, this interferes with applications for oncolytic virotherapy. Alternative strategies for the generation of shielded MV are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cattaneo R, Miest T, Shashkova EV, Barry MA . Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat Rev Microbiol 2008; 6: 529–540.

    Article  CAS  PubMed  Google Scholar 

  2. Liu TC, Galanis E, Kirn D . Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol 2007; 4: 101–117.

    Article  CAS  PubMed  Google Scholar 

  3. Garber K . China approves world’s first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst 2006; 98: 298–300.

    Article  PubMed  Google Scholar 

  4. Parks R, Evelegh C, Graham F . Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Therapy 1999; 6: 1565–1573.

    Article  CAS  PubMed  Google Scholar 

  5. Rose JK, Bergmann JE . Altered cytoplasmic domains affect intracellular transport of the vesicular stomatitis virus glycoprotein. Cell 1983; 34: 513–524.

    Article  CAS  PubMed  Google Scholar 

  6. Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res 2010; 70: 875–882.

    Article  CAS  PubMed  Google Scholar 

  7. Msaouel P, Dispenzieri A, Galanis E . Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: an overview. Curr Opin Mol Ther 2009; 11: 43–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Russell SJ, Peng KW . Measles virus for cancer therapy. Curr Top Microbiol Immunol 2009; 330: 213–241.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Griffin DE . Measles virus. In: Fields B, Knipe DM, Howley PM, (eds) Fields’ Virology. 5th edn Vol. 1. Lippincott Williams and Wilkins Philadelphia, 2007 pp 1551–1585.

    Google Scholar 

  10. Miest TS, Yaiw KC, Frenzke M, Lampe J, Hudacek AW, Springfeld C et al. Envelope-chimeric entry-targeted measles virus escapes neutralization and achieves oncolysis. Mol Ther 2011; 19: 1813–1820.

    Article  CAS  PubMed  Google Scholar 

  11. Tidona CA, Kurz HW, Gelderblom HR, Darai G . Isolation and molecular characterization of a novel cytopathogenic paramyxovirus from tree shrews. Virology 1999; 258: 425–434.

    Article  CAS  PubMed  Google Scholar 

  12. Springfeld C, von Messling V, Tidona CA, Darai G, Cattaneo R . Envelope targeting: hemagglutinin attachment specificity rather than fusion protein cleavage-activation restricts Tupaia paramyxovirus tropism. J Virol 2005; 79: 10155–10163.

    Article  CAS  PubMed  Google Scholar 

  13. Cathomen T, Mrkic B, Spehner D, Drillien R, Naef R, Pavlovic J et al. A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 1998; 17: 3899–3908.

    Article  CAS  PubMed  Google Scholar 

  14. Cathomen T, Naim HY, Cattaneo R . Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J Virol 1998; 72: 1224–1234.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Enkirch T, Kneissl S, Hoyler B, Ungerechts G, Stremmel W, Buchholz CJ et al. Targeted lentiviral vectors pseudotyped with the Tupaia paramyxovirus glycoproteins. Gene Therapy 2013; 20: 16–23.

    Article  CAS  PubMed  Google Scholar 

  16. Spielhofer P, Bachi T, Fehr T, Christiansen G, Cattaneo R, Kaelin K et al. Chimeric measles viruses with a foreign envelope. J Virol 1998; 72: 2150–2159.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Hu A, Cathomen T, Cattaneo R, Norrby E . Influence of N-linked oligosaccharide chains on the processing, cell surface expression and function of the measles virus fusion protein. J Gen Virol 1995; 76: 705–710.

    Article  CAS  PubMed  Google Scholar 

  18. Funke S, Maisner A, Muhlebach MD, Koehl U, Grez M, Cattaneo R et al. Targeted cell entry of lentiviral vectors. Mol Ther 2008; 16: 1427–1436.

    Article  CAS  PubMed  Google Scholar 

  19. Cathomen T, Buchholz CJ, Spielhofer P, Cattaneo R . Preferential initiation at the second AUG of the measles virus F mRNA: a role for the long untranslated region. Virology 1995; 214: 628–632.

    Article  CAS  PubMed  Google Scholar 

  20. Reyes-del Valle J, Devaux P, Hodge G, Wegner NJ, McChesney MB, Cattaneo R . A vectored measles virus induces hepatitis B surface antigen antibodies while protecting macaques against measles virus challenge. J Virol 2007; 81: 10597–10605.

    Article  CAS  Google Scholar 

  21. Rager M, Vongpunsawad S, Duprex WP, Cattaneo R . Polyploid measles virus with hexameric genome length. EMBO J 2002; 21: 2364–2372.

    Article  CAS  PubMed  Google Scholar 

  22. Calain P, Roux L . The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 1993; 67: 4822–4830.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Nakamura T, Peng KW, Harvey M, Greiner S, Lorimer IA, James CD et al. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat Biotechnol 2005; 23: 209–214.

    Article  CAS  PubMed  Google Scholar 

  24. Darai G, Matz B, Flugel RM, Grafe A, Gelderblom H, Delius H . An adenovirus from Tupaia (tree shrew): growth of the virus, characterization of viral DNA, and transforming ability. Virology 1980; 104: 122–138.

    Article  CAS  PubMed  Google Scholar 

  25. Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dotsch C et al. Rescue of measles viruses from cloned DNA. EMBO J 1995; 14: 5773–5784.

    Article  CAS  PubMed  Google Scholar 

  26. Karber G . Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Arch Exp Pathol Pharmakol 1931; 162: 480–483.

    Article  Google Scholar 

  27. Devaux P, von Messling V, Songsungthong W, Springfeld C, Cattaneo R . Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology 2007; 360: 72–83.

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura T, Peng KW, Vongpunsawad S, Harvey M, Mizuguchi H, Hayakawa T et al. Antibody-targeted cell fusion. Nat Biotechnol 2004; 22: 331–336.

    Article  CAS  PubMed  Google Scholar 

  29. Navaratnarajah CK, Vongpunsawad S, Oezguen N, Stehle T, Braun W, Hashiguchi T et al. Dynamic interaction of the measles virus hemagglutinin with its receptor signaling lymphocytic activation molecule (SLAM, CD150). J Biol Chem 2008; 283: 11763–11771.

    Article  CAS  PubMed  Google Scholar 

  30. Vongpunsawad S, Oezgun N, Braun W, Cattaneo R . Selectively receptor-blind measles viruses: identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J Virol 2004; 78: 302–313.

    Article  CAS  PubMed  Google Scholar 

  31. Bagai S, Lamb RA . Truncation of the COOH-terminal region of the paramyxovirus SV5 fusion protein leads to hemifusion but not complete fusion. J Cell Biol 1996; 135: 73–84.

    Article  CAS  PubMed  Google Scholar 

  32. Tarentino AL, Trimble RB, Plummer TH . Enzymatic approaches for studying the structure, synthesis, and processing of glycoproteins. Methods Cell Biol 1989; 32: 111–139.

    Article  CAS  PubMed  Google Scholar 

  33. Buchholz UJ, Granzow H, Schuldt K, Whitehead SS, Murphy BR, Collins PL . Chimeric bovine respiratory syncytial virus with glycoprotein gene substitutions from human respiratory syncytial virus (HRSV): effects on host range and evaluation as a live-attenuated HRSV vaccine. J Virol 2000; 74: 1187–1199.

    Article  CAS  PubMed  Google Scholar 

  34. Stope MB, Karger A, Schmidt U, Buchholz UJ . Chimeric bovine respiratory syncytial virus with attachment and fusion glycoproteins replaced by bovine parainfluenza virus type 3 hemagglutinin-neuraminidase and fusion proteins. J Virol 2001; 75: 9367–9377.

    Article  CAS  PubMed  Google Scholar 

  35. Tao T, Durbin AP, Whitehead SS, Davoodi F, Collins PL, Murphy BR . Recovery of a fully viable chimeric human parainfluenza virus (PIV) type 3 in which the hemagglutinin-neuraminidase and fusion glycoproteins have been replaced by those of PIV type 1. J Virol 1998; 72: 2955–2961.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Tao T, Skiadopoulos MH, Davoodi F, Riggs JM, Collins PL, Murphy BR . Replacement of the ectodomains of the hemagglutinin-neuraminidase and fusion glycoproteins of recombinant parainfluenza virus type 3 (PIV3) with their counterparts from PIV2 yields attenuated PIV2 vaccine candidates. J Virol 2000; 74: 6448–6458.

    Article  CAS  PubMed  Google Scholar 

  37. Zokarkar A, Lamb RA . The paramyxovirus fusion protein C-terminal region: mutagenesis indicates an indivisible protein unit. J Virol 2012; 86: 2600–2609.

    Article  CAS  PubMed  Google Scholar 

  38. Renshaw RW, Glaser AL, Van Campen H, Weiland F, Dubovi EJ . Identification and phylogenetic comparison of Salem virus, a novel paramyxovirus of horses. Virology 2000; 270: 417–429.

    Article  CAS  PubMed  Google Scholar 

  39. Chua KB, Wang LF, Lam SK, Crameri G, Yu M, Wise T et al. Tioman virus, a novel paramyxovirus isolated from fruit bats in Malaysia. Virology 2001; 283: 215–229.

    Article  CAS  PubMed  Google Scholar 

  40. Drexler JF, Corman VM, Muller MA, Maganga GD, Vallo P, Binger T et al. Bats host major mammalian paramyxoviruses. Nat Commun 2012; 3: 796.

    Article  PubMed  Google Scholar 

  41. Woo PC, Lau SK, Wong BH, Fan RY, Wong AY, Zhang AJ et al. Feline morbillivirus, a previously undescribed paramyxovirus associated with tubulointerstitial nephritis in domestic cats. Proc Natl Acad Sci USA 2012; 109: 5435–5440.

    Article  CAS  PubMed  Google Scholar 

  42. Grandi P, Wang S, Schuback D, Krasnykh V, Spear M, Curiel DT et al. HSV-1 virions engineered for specific binding to cell surface receptors. Mol Ther 2004; 9: 419–427.

    Article  CAS  PubMed  Google Scholar 

  43. van den Wollenberg DJ, van den Hengel SK, Dautzenberg IJ, Cramer SJ, Kranenburg O, Hoeben RC . A strategy for genetic modification of the spike-encoding segment of human reovirus T3D for reovirus targeting. Gene Therapy 2008; 15: 1567–1578.

    Article  CAS  PubMed  Google Scholar 

  44. Douglas JT, Miller CR, Kim M, Dmitriev I, Mikheeva G, Krasnykh V et al. A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nat Biotechnol 1999; 17: 470–475.

    Article  CAS  PubMed  Google Scholar 

  45. Rauch S, Martin-Serrano J . Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications for PPXY-dependent budding. J Virol 2011; 85: 3546–3556.

    Article  CAS  PubMed  Google Scholar 

  46. Chen BJ, Lamb RA . Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? Virology 2008; 372: 221–232.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Christoph Springfeld for providing the TPMV-Fecto antibody and helpful insights into previously attempted envelope exchanges. We thank Dr Stephen Russell for providing the Vero-αHis cell line, and Dr Patricia Devaux for numerous helpful discussions. This work was supported by NIH RO1 CA 139389. The salary of AWH was provided, in part, by the Mayo Graduate School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Cattaneo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudacek, A., Navaratnarajah, C. & Cattaneo, R. Development of measles virus-based shielded oncolytic vectors: suitability of other paramyxovirus glycoproteins. Cancer Gene Ther 20, 109–116 (2013). https://doi.org/10.1038/cgt.2012.92

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/cgt.2012.92

Keywords

This article is cited by

Search

Quick links