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5-Hydroxymethylcytosine signatures in cell-free DNA 
provide information about tumor types and stages 
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5-Hydroxymethylcytosine (5hmC) is an important mammalian DNA epigenetic modification that has been linked 
to gene regulation and cancer pathogenesis. Here we explored the diagnostic potential of 5hmC in circulating cell-free 
DNA (cfDNA) using a sensitive chemical labeling-based low-input shotgun sequencing approach. We sequenced cell-
free 5hmC from 49 patients of seven different cancer types and found distinct features that could be used to predict 
cancer types and stages with high accuracy. Specifically, we discovered that lung cancer leads to a progressive global 
loss of 5hmC in cfDNA, whereas hepatocellular carcinoma and pancreatic cancer lead to disease-specific changes in 
the cell-free hydroxymethylome. Our proof-of-principle results suggest that cell-free 5hmC signatures may potentially 
be used not only to identify cancer types but also to track tumor stage in some cancers.
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Introduction

Circulating cell-free DNA (cfDNA) are DNA frag-
ments found in the blood that originate from cell death in 
different tissues; this phenomenon has formed the basis 
of noninvasive prenatal diagnostic tests [1], organ trans-

plant rejection diagnostics [2], and cancer detection [3]. 
Recent work has focused on the identification of 5-meth-
ylcytosine (5mC) modifications in cfDNA to characterize 
a variety of potential health conditions [3-8]. However, 
there has been no investigation to date of alternative 
epigenetic DNA modifications in cfDNA, due in part to 
the challenges of identifying and sequencing alternative 
modifications in low-input DNA samples. 

5-Hydroxymethylcytosine (5hmC) is a recently iden-
tified epigenetic mark which impacts a broad range 
of biological processes ranging from development to 
pathogenesis [9, 10]. 5hmC is generated from 5mC by 
the ten-eleven translocation (TET) family dioxygenases 
[11]. Compared to the repressive effect of 5mC, 5hmC 
is generally believed to have a permissive effect on gene 
expression [12-15]. Unlike 5mC which is uniformly dis-
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tributed among different tissues in terms of total mass, 
5hmC displays a tissue-specific mass distribution [16, 
17] and low levels of 5hmC are also frequently observed 
in many solid tumors compared to corresponding normal 
tissues [18]. These characteristics suggest that 5hmC 
may have potential value in cancer diagnostics [10]. 
However, in contrast to the intensive studies on cell-free 
5mC, cell-free 5hmC has remained unexploited, partly 
due to the low levels of 5hmC in the human genome 
(10-to 100-fold < 5mC) [17] and the lack of a sensitive 
low-input 5hmC DNA sequencing method that would 
work with the minute amounts of cfDNA available (typ-
ically only a few nanograms per ml of plasma). In this 
work, we developed a sensitive chemical labeling-based 
low-input whole-genome 5hmC sequencing method that 
allows rapid and reliable sequencing of 5hmC in cfDNA, 
and showed that cell-free 5hmC display distinct features 
in several types of cancer, which can potentially be used 
not only to identify cancer types but also to track tumor 
stage in some cancers.

Results

Development of cell-free 5hmC sequencing
We developed a low-input whole-genome cell-free 

5hmC sequencing method based on selective chemical 
labeling (hMe-Seal) [13]. hMe-Seal is a robust method 
that uses β-glucosyltransferase (βGT) to selectively label 
5hmC with a biotin via an azide-modified glucose for 
pull-down of 5hmC-containing DNA fragments for se-
quencing [13] (Supplementary information, Figure S1A). 
Standard hMe-Seal procedure requires micrograms of 
DNA. In our modified approach, cfDNA is first ligated 
with sequencing adapters and 5hmC is selectively la-
beled with a biotin group. After capturing cfDNA con-
taining 5hmC using streptavidin beads, the final library 
is completed by PCR directly from the beads instead 
of eluting the captured DNA to minimize sample loss 
during purification steps (Figure 1A). With this approach 
we can sequence cell-free 5hmC readily from 1-10 ng of 
cfDNA. By utilizing a pool of 180 bp amplicons bearing 
C, 5mC or 5hmC spiked into cfDNA, we demonstrated 
that only 5hmC-containing DNA can be detected by PCR 
from the beads after pull-down (Supplementary informa-
tion, Figure S1B). This result was confirmed in the final 
sequencing libraries, which showed over 100-fold en-
richment in reads mapping to 5hmC spike-in DNA (Figure 
1B). Furthermore, our approach performed equally well 
with cfDNA and bulk genomic DNA (1 µg whole blood 
genomic DNA (gDNA)) (Figure 1B). The final cell-free 
5hmC libraries are highly complex with a median unique 
nonduplicate map rate of 0.75 when lightly sequenced 

(median 15 million reads, ~0.5 fold human genome cov-
erage) (Supplementary information, Figure S1C, S1D 
and Table S1), and yet technical replicates are highly 
reproducible (Supplementary information, Figure S1E). 
We identified 5hmC-enriched regions (hMRs) in the se-
quence data using a Poisson-based method [19]. hMRs 
are highly concordant between technical replicates and a 
pooled sample: over 75% of hMRs in the pooled sample 
are in common with each of the replicates (Supplementary 
information, Figure S1F), reaching the ENCODE stan-
dard for ChIP-Seq [20]. These results demonstrate that 
cell-free 5hmC can be readily and reliably profiled by the 
modified hMe-Seal method.

Genome-wide mapping of 5hmC in cfDNA
We first sequenced cell-free 5hmC from eight healthy 

individuals (Supplementary information, Tables S1 and 
S2). We also sequenced 5hmC from whole blood gDNA 
from two of the individuals as blood is the major con-
tributor to cell-free nucleic acids. Genome-scale profiles 
showed that the cell-free 5hmC distributions are nearly 
identical between healthy individuals and are clearly dis-
tinguishable from both the whole blood 5hmC distribu-
tion and the input cfDNA (Supplementary information, 
Figure S2A). Previous studies of 5hmC in mouse and 
human tissues showed that the majority of 5hmC resides 
in the gene bodies and promoter proximal regions of 
the genome [12, 14]. Genome-wide analysis of hMRs 
in our cfDNA data showed that the majority (80%) are 
intragenic with most enrichment in exons (observed to 
expected, o/e = 7.29), and depletion in intergenic regions 
(o/e = 0.46), consistent with that in whole blood (Supple-
mentary information, Figure S2B and S2C) and in other 
tissues [12, 14]. The enrichment of 5hmC in gene bodies 
is known to be correlated with transcriptional activity in 
tissues such as the brain and liver [12-14]. To determine 
whether this relationship holds in cfDNA, we performed 
sequencing of the cell-free RNA from the same individ-
ual [21]. By dividing genes into three groups according 
to their cell-free RNA expression and plotting the aver-
age cell-free 5hmC profile along gene bodies (metagene 
analysis), we discovered an enrichment of 5hmC in and 
around gene bodies of more highly expressed genes (Fig-
ure 1C). These results demonstrate that cell-free 5hmC is 
derived from various tissue types and contains informa-
tion from tissues other than the blood.

Since cell-free 5hmC were mostly enriched in the 
intragenic regions, we next used genic 5hmC fragments 
per kilobase of gene per million mapped reads (FPKM) 
to further compare the cell-free hydroxymethylome with 
the whole blood hydroxymethylome. Indeed, unbiased 
analysis of genic 5hmC using t-distributed stochastic 
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Figure 1 Sequencing of 5hmC in cfDNA. (A) General procedure of cell-free 5hmC sequencing. cfDNA is ligated with Illumina 
adapter and labeled with biotin on 5hmC for pull-down with streptavidin beads. The final library is completed by directly PCR 
from streptavidin beads. (B) Percentage of reads mapped to spike-in DNA in the sequencing libraries. Error bars indicate SD. 
(C) Metagene profiles of log2 fold change of cell-free 5hmC to input cfDNA ratio in genes ranked according to their expression 
in cell-free RNA-Seq. 

neighbor embedding (tSNE) [22] showed strong sepa-
ration between the cell-free and whole blood samples 
(Supplementary information, Figure S2D). We used the 
limma package [23] to identify 2 082 differentially hy-
droxymethylated genes between whole blood and cell-
free samples (q-values (Benjamini and Hochberg adjust-
ed P-values) < 0.01, fold change > 2, Supplementary 
information, Figure S3A). Notably, the 735 blood-spe-
cific 5hmC enriched genes showed increased expression 
in whole blood compared to the 1 347 cell-free-specific 
5hmC enriched genes [24] (P-value < 2.2 × 10−16, Welch 
t-test) (Supplementary information, Figure S3B). In 
agreement with the differential expression, gene ontolo-
gy (GO) analysis [25] of blood-specific 5hmC enriched 
genes mainly identified blood cell-related processes 
(Supplementary information, Figure S3C), whereas 

cell-free-specific 5hmC enriched genes identified much 
more diverse biological processes (Supplementary infor-
mation, Figure S3D). Examples of whole blood-specific 
(FPR1, FPR2) and cell-free-specific (GLP1R) 5hmC 
enriched genes are shown in Supplementary information, 
Figure S3E. Together, these results provide further evi-
dence that a variety of tissues contribute 5hmC to cfDNA 
and that measurement of this is a rough proxy for gene 
expression. 

Stage-dependent loss of 5hmC in lung cancer cfDNA
To explore the diagnostic potential of cell-free 5hmC, 

we applied our method to sequence cfDNA of a panel 
of 49 treatment-naïve primary cancer patients, including 
15 lung cancer, 10 hepatocellular carcinoma (HCC), 7 
pancreatic cancer, 4 glioblastoma (GBM), 5 gastric can-
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cer, 4 colorectal cancer, 4 breast cancer patients (Supple-
mentary information, Tables S3-S9). These patients vary 
from early stage cancer to late stage metastatic cancer. 
In lung cancer, we observed a progressive global loss of 
5hmC enrichment from early stage non-metastatic lung 
cancer to late stage metastatic lung cancer compared to 
healthy cfDNA, and it gradually resembled that of the 
unenriched input cfDNA (Figure 2A). Unbiased gene 
body analysis using tSNE also showed a stage-dependent 
migration of the lung cancer profile from the healthy 
profile to one resembling the unenriched input cfDNA 

(Supplementary information, Figure S4A). Notably, even 
the early stage lung cancer samples are highly separated 
from the healthy samples (Supplementary information, 
Figure S4A). We further confirmed the global hypohy-
droxymethylome events using other metrics. First, most 
differential genes in metastatic lung cancer (q-values < 
1e-7, 1 159 genes) showed stage-dependent depletion of 
5hmC compared to healthy samples (Figure 2B). Second, 
the metagene profile showed a stage-dependent depletion 
of gene body 5hmC signal and resemblance of the unen-
riched input cfDNA (Supplementary information, Figure 

Figure 2 Lung cancer leads to progressive loss of 5hmC enrichment in cfDNA. (A) Genome browser view of the cell-free 
5hmC distribution in a 10 mb region in chromosome 6. The overlapping tracks of healthy, non-metastatic lung cancer, meta-
static lung cancer and input cfDNA samples are shown in line plot. (B) Heatmap of 1 159 metastatic lung cancer differential 
genes in healthy, lung cancer samples and the unenriched input cfDNA. Hierarchical clustering was performed across genes 
and samples. (C) Boxplot of number of hMRs (normalized to 1 million reads) identified in each group. (D) Boxplots of CCNY 
and PDIA6 5hmC FPKM in lung cancer and other cfDNA samples. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 1e-5, Welch 
t-test.
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S4B). Third, there is a dramatic decrease in the number 
of hMRs identified in lung cancer, especially in meta-
static lung cancer compared to healthy and other cancer 
samples (Figure 2C). These data collectively indicate 
stage-dependent global loss of 5hmC levels in lung can-
cer cfDNA. 

It should be noted that the global loss of 5hmC enrich-
ment seen in lung cancer cfDNA is not due to the failure 
of our enrichment method, as the spike-in control in all 
samples including the lung cancer samples showed high 
enrichment of 5hmC-containing DNA (Supplementary 
information, Figure S4C). It is also a phenomenon unique 
to lung cancer that is not observed in other cancers we 
tested, evidenced by the number of hMRs (Figure 2C) 
and the metagene profiles (Supplementary information, 
Figure S4B). Examples of 5hmC depleted genes in lung 
cancer are shown in Figure 2D and Supplementary infor-
mation, Figure S4D. Lung cancer tissue is known to have 
a low level of 5hmC compared to normal lung tissue [18], 
and lung has a relatively large contribution to cfDNA [21]. 
It is plausible that lung cancer, especially metastatic lung 
cancer, causes large quantities of hypohydroxymethylat-
ed gDNA to be released into cfDNA, effectively diluting 
the cfDNA and leading to the depletion of 5hmC in the 
cell-free 5hmC landscape. Alternatively or in combina-
tion, the cfDNA hypohydroxymethylation could originate 
from blood gDNA hypohydroxymethylation observed in 
metastatic lung cancer patients as recently reported [26]. 
Taken together these results indicate that cell-free 5hmC 
sequencing may potentially serve as a powerful tool for 
early lung cancer detection as well as monitoring lung 
cancer progression and metastasis.

Monitoring treatment and recurrence in HCC
For HCC, we also sequenced cell-free 5hmC from sev-

en patients with hepatitis B (HBV) infection, since most 
HCC cases are secondary to viral hepatitis infections 
(Supplementary information, Table S4). Unbiased gene 
level analysis by tSNE revealed that HCC patients in 
general can be separated from the HBV-infected patients 
and healthy individuals based on the cell-free 5hmC pat-
terns (Figure 3A). HCC-specific differential genes (q-val-
ues < 0.001, fold change > 1.41, 1 006 genes) could sep-
arate HCC from healthy and most of the HBV samples 
(Figure 3B). Both HCC specifically enriched and de-
pleted genes can be identified compared to other cfDNA 
samples (Figure 3B), and the enriched genes (379 genes) 
showed increased expression in liver tissue compared to 
the depleted genes (637 genes) [24] (P-values < 2.2 × 
10−16, Welch t-test) (Supplementary information, Figure 
S5A), consistent with the permissive effect of 5hmC on 
gene expression. An example of HCC-specific 5hmC en-

riched genes is AHSG, a secreted protein highly expressed 
in the liver [24] (Figure 3C; Supplementary information, 
Figure S5B and S5C), and an example of HCC-specific 
5hmC depleted genes is TET2, one of the enzymes that 
generate 5hmC and a tumor suppressor down-regulated in 
HCC [27] (Figure 3D; Supplementary information, Figure 
S5D). Together, these results point to a model where virus 
infection and HCC development lead to a gradual damage 
of liver tissue and increased presentation of liver DNA in 
the blood.

To further explore the potential of cell-free 5hmC for 
monitoring treatment and disease progression, we fol-
lowed four of the HCC patients who underwent surgical 
resection, out of which three of them had recurrent disease 
(Supplementary information, Table S4). Analysis of serial 
plasma samples from these patients (pre-operation/pre-
op; post-operation/post-op; and recurrence) with tSNE 
revealed that post-op samples clustered with healthy sam-
ples, whereas the recurrence samples clustered with HCC 
(Figure 3E). This pattern was also reflected by changes 
in the 5hmC FPKM of AHSG and TET2 (Figure 3C and 
3D). As an example of using cell-free 5hmC for tracking 
HCC treatment and progression, we employed linear dis-
criminant analysis (LDA) to define a linear combination 
of the HCC-specific differential genes (Figure 3D) into to 
a single value (the HCC score) that best separated the pre-
op HCC samples from the healthy and HBV samples. We 
then calculated the HCC score for the post-op and recur-
rence HCC samples, and showed that the HCC score can 
accurately track the treatment and recurrence states (Sup-
plementary information, Figure S5E). Together, these re-
sults indicate that cell-free 5hmC sequencing presents an 
opportunity to detect HCC, as well as monitor treatment 
outcome and disease recurrence.

Pancreatic cancer impacts the cell-free 5hmC
We also found pancreatic cancer produced drastic 

changes in its cell-free hydroxymethylome, even in some 
early stage pancreatic cancer patients (Supplementary in-
formation, Table S5). Like HCC, pancreatic cancer lead to 
both up-regulated and down-regulated 5hmC genes com-
pared to healthy individuals (q-value < 0.01, fold change 
> 2, 713 genes) (Supplementary information, Figure S6A). 
Examples of pancreatic cancer-specific 5hmC-enriched 
and depleted genes compared to other cfDNA samples are 
shown in Supplementary information, Figure S6B-S6E. 
Our results suggest that cell-free 5hmC sequencing can be 
potentially valuable for early detection of pancreatic can-
cer.

Copy number variation estimation
Copy number variation (CNV) can be detected from 
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Figure 3 Cell-free 5hmC for monitoring HCC progression and treatment. (A) tSNE plot of 5hmC FPKM from healthy, HBV 
and HCC samples. (B) Heatmap of 1 006 HCC differential genes in healthy, HBV and HCC samples. Hierarchical clustering 
was performed across genes and samples. (C, D) Boxplots of AHSG (C) and TET2 (D) 5hmC FPKM in HBV, HCC (pre-op), 
HCC post-op, HCC recurrence and other cfDNA samples. *P < 0.05, **P < 1e-4, ***P < 1e-5, Welch t-test. (E) tSNE plot of 
5hmC FPKM from healthy, HCC pre-op, HCC post-op and HCC recurrence samples.

cfDNA sequencing, mostly in advanced cancer patients, 
which provides a way to assess the tumor burden in the 
cfDNA [3]. To assess the tumor burden in our samples 
and to explore the relation between CNV contained from 
unenriched input cfDNA sequencing and the 5hmC en-
richment sequencing, we also sequenced the input cfD-
NA in 47 samples (Supplementary information, Table 
S10). We analyzed the CNV from these input cfDNA 
sequencing with 1 mb bin [28], and as expected we could 
detect large-scale CNV from about 20% of the cancer 
samples, mostly in late stage cancer samples (Supple-

mentary information, Figure S7A). We then analyzed the 
CNV from the corresponding 5hmC enrichment sequenc-
ing and interestingly, we found matched CNV patterns in 
several cases (Supplementary information, Figure S7A). 
For example we could detect chromosome wise CNV 
in lung293 and lung417, two metastatic lung cancer 
samples, from input cfDNA sequencing (Supplemen-
tary information, Figure S7B and S7C). These samples 
displayed large-scale cell-free 5hmC changes and corre-
spondingly, the CNV patterns detected from the 5hmC 
enrichment sequencing mimic the CNV patterns detected 
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from input cfDNA sequencing (Supplementary infor-
mation, Figure S7D and S7E). This result supports the 
notion that 5hmC enriched cfDNA contains significant 
portion of tumor-derived cfDNA and therefore represents 
5hmC patterns in tumor cells. It also shows that 5hmC 
sequencing and CNV analysis could complement each 
other in circulating tumor DNA analysis.

Cancer type and stage prediction
Although there has been great interest in using cfD-

NA as a “liquid biopsy” for cancer detection, it has been 
challenging to identify the origin of tumor cfDNA and 
hence the location of the tumor. We discovered from 
tSNE analysis of all seven cancer types that lung cancer, 
HCC and pancreatic cancer showed distinct signatures 

and could be readily separated from each other and 
healthy samples (Figure 4A). The other four types of can-
cer displayed relatively minor changes compared to the 
healthy samples. Using other features such as the promo-
tor region (5 kb upstream of the transcription start site) 
showed similar patterns (Supplementary information, 
Figure S8A). We note that no particular cancer type we 
tested resembled the whole blood profile (Supplementary 
information, Figure S8B), suggesting that the blood cell 
contamination is not a significant source of variation. 
All patients in our panel fall in the same age range as the 
healthy individuals (Supplementary information, Figure 
S8C and Tables S2-S9), therefore age is unlikely to be a 
confounding factor. We also did not observe any batch 
effect (Supplementary information, Figure S8D). 

Figure 4 Cancer type and stage prediction with cell-free 5hmC. (A) tSNE plot of 5hmC FPKM in cfDNA from healthy and 
various cancer samples. (B) The actual and predicted classification by leave-one-out cross-validation using Mclust (MC) and 
Random Forest (RF) algorithm, based on two feature sets (gene body and DhMR). (C) The Cohen’s kappa coefficient for 
measuring inter-classifier agreement (GB for gene body). The error bar indicates 95% confidence interval of the Cohen’s kap-
pa estimate.
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To further demonstrate the potential of cfDNA 5hmC 
as a biomarker to predict cancer types, we employed two 
widely used machine learning methods, the Gaussian 
mixture model [29] and Random Forest [30]. We focused 
on the prediction of HCC, pancreatic cancer, non-met-
astatic and metastatic lung cancer. On the basis of three 
rules (see Materials and Methods section), we identified 
genes (Supplementary information, Table S11) whose 
average gene body 5hmC levels could either distinguish 
cancer groups from healthy groups or between cancer 
groups. In addition to using gene body data, the 5hmC 
on non-coding regions could also potentially serve as a 
biomarker in predicting cancer types [9]. We therefore 
designed another set of features by investigating each 
of the 2 kb windows of the entire genome and identi-
fied differential hMRs (DhMRs) for each cancer type 
(see Materials and Methods section; Supplementary 
information, Table S12). We trained the two machine 
learning algorithms using either differential 5hmC genes 
or DhMRs as features and evaluated the leave-one-out 
(LOO) cross-validation prediction accuracy. The Gauss-
ian mixture model-based predictor (Mclust) had overall 
successful prediction rates of 75% and 82.5%, when 
using gene body and DhMRs as features, respectively 
(Figure 4B; Supplementary information, Figure S9A and 
S9B). Mclust-based dimensional reduction showed clear 
boundaries between the groups (Supplementary informa-
tion, Figure S9C). When only the type of the cancer is 
considered, Mclust predictors had higher success rate of 
82.5% and 90% when using these two feature sets. The 
Random Forest predictor achieved LOO cross-validation 
prediction accuracy of 85%, when using either gene body 
or DhMRs as features (Figure 4B). When only cancer 
type is considered, Random Forest predictor achieved 
87.5% and 90% prediction accuracy, with gene body and 
DhMRs as features, respectively. Distinct 5hmC profiles 
in different cancer types of several DhMRs with high 
variable importance to random forest prediction model 
could be observed (Supplementary information, Figures 
S9D, S9E and S10). Finally, we used Cohen’s kappa to 
evaluate the concordance rate between different predic-
tion models [31]. All combinations showed high agree-
ment (Cohen’s kappa ~0.8) in inter-classifier comparison 
and when comparing with the actual classification (Figure 
4C). These results support the prospects of using cell-
free 5hmC for cancer diagnostics and staging.

Discussion

Recent studies have reported that 5hmC is an import-
ant component of the mammalian genome [9, 32]. In this 
study, we reported an improved hMe-Seal [13] approach 

to sequence the low levels of 5hmC in cfDNA, which 
offers several notable advantages. First, unlike traditional 
bisulfite sequencing used for cell-free 5mC sequencing, 
our method does not further degrade the highly frag-
mented cfDNA. Second, compared to whole genome 
approaches including mutational sequencing and bisulfite 
sequencing, the enrichment for 5hmC not only enables 
cost-effective sequencing (10-20 million reads, ~0.5-fold 
human genome coverage), but more importantly allows 
the low-frequency tissue contribution of 5hmC in cfDNA 
to be amplified from the dominant blood cell contribu-
tion in cfDNA. 

We sequenced cell-free 5hmC from a panel of seven 
cancer types and focused our analysis on lung cancer, 
HCC and pancreatic cancer, the three cancers which 
displayed the most dramatic impact on the cell-free 
hydroxymethylome, even in the early stages. Lung and 
liver are reported to have relatively large contribution to 
cfDNA [5, 21], and pancreatic cancer is known to invade 
progressively to the lymph nodes and liver during early 
stages without remarkable symptoms, which may explain 
their large impact on the cell-free hydroxymethylome. In 
lung cancer, we observed a characteristic stage-depen-
dent global loss of cell-free 5hmC enrichment, whereas 
in HCC and pancreatic cancer, we identified significant 
finer scale changes of cell-free 5hmC (i.e., gene body 
and DhMR). In HCC, we also conducted an explorato-
ry study of longitudinal samples whose results suggest 
that cell-free 5hmC may be used to monitor treatment 
and recurrence. Further studies will help elucidate how 
each cancer causes specific changes in the cell-free hy-
droxymethylome. Importantly, these three types of can-
cer displayed distinct patterns in their cell-free hydrox-
methylome and we could employ machine learning algo-
rithms trained with cell-free 5hmC features to predict the 
three cancer types with high accuracy. 

In summary, we report the first proof-of-principle 
global analysis of hydroxymethylome in cfDNA. Large-
scale clinical trials are required to fully validate the use-
fulness and understand potential limitations of this ap-
proach. Cell-free 5hmC contributes a new dimension of 
information to liquid biopsy-based diagnosis and prog-
nosis; and we anticipate it may become a valuable tool 
for cancer diagnostics, as well as potentially for other 
disease areas, including but not limited to neurodegener-
ative diseases, cardiovascular diseases and diabetes. We 
envisage this strategy could be readily combined with 
other genetic and epigenetic-based cfDNA approaches 
(e.g., CNV analysis as we demonstrated) for increased 
diagnostic power. Our method represents the first enrich-
ment-based genome-wide approach applied to cfDNA. 
The general framework of this method can be readily 
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adopted to sequence other modifications in cell-free nu-
cleic acids by applying the appropriate labeling chemistry 
to the modified bases. This would allow a comprehensive 
and global overview of genetic and epigenetic changes of 
various disease states, and further increase the power of 
personalized diagnostics.

Materials and Methods

Study design
The overall goal of this study was to explore the diagnostic po-

tential of 5hmC cfDNA for cancer detection. The objective of the 
first portion of the study was to determine whether 5hmC can be 
sequenced from cfDNA using an enrichment-based method. The ob-
jective of the second portion of the study was to determine whether 
cell-free 5hmC contains information that can be used for cancer 
diagnostics. Samples for healthy subjects were obtained from Stan-
ford blood center. HCC and breast cancer patients were recruited in 
a Stanford University Institutional Review Board-approved proto-
col. Lung cancer, pancreatic cancer, GBM, gastric cancer and col-
orectal cancer patients were recruited in a West China Hospital In-
stitutional Review Board-approved protocol. All recruited subjects 
gave informed consent. No statistical methods were used to prede-
termine sample size. The experiments were not randomized and the 
investigators were not blinded to allocation during experiments and 
outcome assessment. No samples were excluded from the analysis.

Clinical sample collection and processing
Blood was collected into EDTA-coated Vacutainers. Plasma was 

collected from the blood samples after centrifugation at 1 600× g 
for 10 min at 4 °C and 16 000× g at 10 min at 4 °C. cfDNA was 
extracted using the Circulating Nucleic Acid Kit (Qiagen). Whole 
blood genomic DNA was extracted using the DNA Mini Kit (Qiagen) 
and fragmented using dsDNA Fragmentase (NEB) into average 300 
bp. DNA was quantified by Qubit Fluorometer (Life Technologies). 
Cell-free RNA was extracted using the Plasma/Serum Circulating 
and Exosomal RNA Purification Kit (Norgen). The extracted cell-
free RNA was further digested using Baseline-ZERO DNases (Epi-
centre) and depleted using Ribo-Zero rRNA Removal Kit (Epicentre) 
according to a protocol from Clontech.

Spike-in amplicon preparation
To generate the spiked-in control, lambda DNA was PCR ampli-

fied by Taq DNA Polymerase (NEB) and purified by AMPure XP 
beads (Beckman Coulter) in nonoverlapping ~180 bp amplicons, 
with a cocktail of dATP/dGTP/dTTP and one of the following: 
dCTP, dmCTP or 10% dhmCTP (Zymo)/90% dCTP. Primers se-
quences are as follows: dCTP FW-5′-CGTTTCCGTTCTTCTTC-
GTC-3′, RV-5′-TACTCGCACCGAAAATGTCA-3′; dmCTP 
FW-5′-GTGGCGGGTTATGATGAACT-3′, RV-5′-CATAAAATGC-
GGGGATTCAC-3′; 10% dhmCTP/90% dCTP FW-5′-TGAAAAC-
GAAAGGGGATACG-3′, RV-5′-GTCCAGCTGGGAGTCGA-
TAC-3′.

5hmC library construction, labeling, capture and 
high-throughput sequencing

cfDNA (1-10 ng) or fragmented whole blood genomic DNA 
(1 µg) spiked with amplicons (0.01 pg of each amplicon per 10 

ng DNA) was end repaired, 3′-adenylated and ligated to DNA 
Barcodes (Bioo Scientific) using KAPA Hyper Prep Kit (Kapa 
Biosystems) according to the manufacturer’s instructions. Ligated 
DNA was incubated in a 25 µl solution containing 50 mM HEPES 
buffer (pH 8), 25 mM MgCl2, 60 µM UDP-6-N3-Glc (Active 
Motif) and 12.5 U βGT (Thermo) for 2 h at 37 °C. After that, 2.5 
µl DBCO-PEG4-biotin (Click Chemistry Tools, 20 mM stock in 
DMSO) was directly added to the reaction mixture and incubated 
for 2 h at 37 °C. Next, 10 µg sheared salmon sperm DNA (Life 
Technologies) was added into the reaction mixture and the DNA 
was purified by Micro Bio-Spin 30 Column (Bio-Rad). The puri-
fied DNA was incubated with 0.5 µl M270 Streptavidin beads (Life 
Technologies) pre-blocked with salmon sperm DNA in buffer 1 (5 
mM Tris pH 7.5, 0.5 mM EDTA, 1 M NaCl and 0.2% Tween 20) 
for 30 min. The beads were subsequently undergone three 5-min 
washes each with buffer 1, buffer 2 (buffer 1 without NaCl), buffer 
3 (buffer 1 with pH 9) and buffer 4 (buffer 3 without NaCl). All 
binding and washing were done at room temperature with gentle 
rotation. Beads were then resuspended in water and amplified with 
14 (cfDNA) or 9 (whole blood genomic DNA) cycles of PCR 
amplification using Phusion DNA polymerase (NEB). The PCR 
products were purified using AMPure XP beads. Separate input 
libraries were made by direct PCR from ligated DNA without la-
beling and capture. For technical replicates, cfDNA from the same 
subject was divided into two technical replicates. Pair-end 75 bp 
sequencing was performed on the NextSeq instrument.

Data processing and gene body analysis
FASTQ sequences were aligned to UCSC/hg19 with Bowtie2 

v2.2.5 [33] and further filtered with samtools-0.1.19 [34] (param-
eters used: samtools view -f 2 -F 1548 -q 30 and samtools rmdup) 
to retain unique non-duplicate matches to the genome. Pair-end 
reads were extended and converted into bedgraph format nor-
malized to the total number of aligned reads using bedtools [35], 
and then converted to bigwig format using bedGraphToBigWig 
from the UCSC Genome Browser for visualization in Integrated 
Genomics Viewer [36, 37]. FASTQ sequences were also aligned 
to the three spike-in control sequences to evaluate the pull-down 
efficiency. The spike-in control is only used as a validation of 
successful pull-down in each sample. hMRs were identified with 
MACS [19] using unenriched input DNA as background and de-
fault setting (P-value cutoff 1e-5). Genomic annotations of hMRs 
were performed by determining the percentage of hMRs overlap-
ping each genomic regions ≥ 1 bp. Metagene profile was generated 
using ngs.plot [38]. 5hmC FPKM were calculated using the frag-
ment counts in each RefSeq gene body obtained by bedtools. For 
differential analyses, genes shorter than 1 kb or mapped to chro-
mosome X and Y were excluded. Differential genic 5hmC analysis 
was performed using the limma package in R [23]. GO analyses 
were performed using DAVID Bioinformatics Resources 6.7 with 
GOTERM_BP_FAT [25, 39]. Tissue-specific gene expression was 
obtained from BioGPS [24, 40, 41]. For tSNE plot, the Pearson 
correlation of gene body 5hmC FPKM was used as the distance 
matrix to tSNE. MA-plot, hierarchical clustering, tSNE, LDA and 
heatmaps were done in R.

Cell-free RNA library construction and high-throughput se-
quencing

Cell-free RNA library was prepared using ScriptSeq v2 RNA-
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Seq Library Preparation Kit (Epicentre) following the FFPE RNA 
protocol with 19 cycles of PCR amplification. The PCR products 
were then purified using AMPure XP beads. Pair-end 75 bp se-
quencing was performed on the NextSeq instrument. RNA-seq 
reads were first trimmed using Trimmomatic-0.33 [42] and then 
aligned using tophat-2.0.14 [43]. RPKM expression values were 
extracted using cufflinks-2.2.1 [44] using RefSeq gene models.

CNV estimation
The hg19 human genome was split into 1 mb bin and bin 

counts were generated using bedtools intersect. Mappability score 
of each bin was then assessed by average mappability using map-
pability track of hg19 from UCSC (kmer = 75). Bins with mappa-
bility score under 0.8 were eliminated from further analysis. GC 
content percentages in each bin were calculated using getGC.hg19 
from R package PopSV (1.0.0) and GC bias was corrected by fit-
ting a LOESS model (correct.GC from R package PopSV 1.0.0). 
The corrected bin counts were then scaled by mean bin count of 
each sample and centered at 2. For estimation of CNV, we cutoff 
the corrected bin counts higher than 5 to minimize impact of ex-
treme values. Moving averages with window size of 20 mb were 
then calculated within each chromosome, as the final estimation of 
CNV.

Cancer type and stage prediction
Lung cancer, pancreatic cancer, HCC and healthy samples (n = 

40) were included in the following analyses and LOO cross-valida-
tion was performed. With each iteration of LOO, one sample was 
left out first, and the remaining 39 samples were used for feature 
selection and as a training data set. The left out sample was then 
used to test the prediction accuracy of the machine learning mod-
el. Two types of feature selection were performed as independent 
analysis. In the “gene body” approach, cancer type-specific marker 
genes were selected by performing a Student’s t-test between (1) 
one cancer group and healthy group, (2) one cancer group and 
other cancer samples, (3) two different cancer groups. Benjamini 
and Hochberg correction was then performed for the raw P-value 
and the genes were then sorted by q-value. The top five genes with 
smallest q-value from each of these comparisons were selected as 
feature set to train the classifier. The second approach to finding 
features (“DhMR”) attempted to achieve higher resolution by first 
breaking the reference genome (hg19) into 2kb windows in silico 
and then calculating 5hmC FPKM value for each of the window. 
Blacklisted genomic regions that tend to show artifact signal ac-
cording to ENCODE were filtered before down-stream analysis 
[45]. For cancer type-specific DhMRs, Student’s t-test and Ben-
jamini and Hochberg correction of P-values were performed for 
comparison pairs same as previously performed for identifying 
cancer-specific genes. The top five DhMRs with smallest q-value 
from each comparison were chosen for each cancer type. Random 
forest and Gaussian model-based Mclust classifier were performed 
on the data set using previously described features (gene bodies 
and DhMRs). Classifiers were trained on lung cancer, pancreatic 
cancer, HCC and healthy samples. The same random seed (seed = 
5) was used in every random forest analysis for consistency. The 
top 15 features shared by at least 30 LOO iterations with the high-
est mean decrease Gini with the highest variable importance were 
plotted. Gaussian mixture model analysis was performed using 
Mclust R package [29]. For Mclust model-based classifier train-

ing, a Bayesian information criterion (BIC) plot was performed for 
visualization of the classification efficacy of different multivariate 
mixture models. By default, the EEI model (diagonal, equal vol-
ume and shape) or VII model (spherical, unequal volume) with 
EDDA model-type (single component for each class with the same 
covariance structure among classes) were chosen for Mclust clas-
sification. Cohen’s kappa was then calculated for assessment of the 
interclassifier concordance.

Statistical analysis
We used unpaired two-tailed t-tests (Welch t-test) for normally 

distributed data in which two comparison groups were involved. In 
the case of multiple comparisons, Benjamini and Hochberg correc-
tion was then performed for the raw P-value to obtain the q-value. 
Random forest and Gaussian model-based Mclust were used as 
machine classifiers. Cohen’s kappa was used for evaluating the 
predictive value of cell-free DNA 5hmC sequencing and interclas-
sifier concordance. tSNE was used for dimension reduction and 
visualization. Statistical analyses were performed in R 3.3.2. 

All sequencing data were deposited in the Gene Expression 
Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession num-
ber GSE81314.
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