Figure 4
From: Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior

Abolishing endothelial GABA release and its effect on telencephalic angiogenesis (A) A low-magnification co-labeled image of Isolectin B4, VGAT and DAPI labeling of periventricular endothelial cells (pv ecs). (B) High-magnification image of Isolectin B4, VGAT and DAPI labeling of a pv ec (60×). (C) Different morphologies of Isolectin B4 (IB4) and Tie2-GFP-labeled ecs expressing VGAT (60×). (D) Low- and high-magnification images showing specifically in vivo expression of VGAT in endothelial cells of E13 Tie 2-GFP telencephalon. White arrows point to cells that were magnified. (E) No VGAT expression was detected in VgatECKO pv ecs (60×). (F, G) Low- and high-magnification images showing that expression of GABA (F) and GAD65/67 (G) was not affected in VgatECKO pv ecs. (H) Successful elimination of GABA secretion from embryonic VgatECKO pv ecs measured by ELISA; Data represent mean ± SD (n = 6, *P < 0.05, Student's t-test). (I-K) Isolectin B4 labeling revealed a significant reduction in vessels in E13 VgatECKO telencephalon (yellow asterisk, J) when compared to Vgatfl/fl telencephalon (I). (K) Quantification of vessel densities; Data represent mean ± SD (n = 6, *P < 0.05, Student's t-test). (L) The migratory behavior of Qdot-labeled VgatECKO pv ecs was decreased (yellow asterisk) compared to Vgatfl/fl pv ecs. Representative images from the transwell migration assay are shown. (M) Quantification of the number of migrated cells per field from each group (n = 8, *P < 0.05, mean ± SD. Student's t-test). (N) Vgatfl/fl pv ecs showed robust tube formation in an angiogenesis assay on matrigel (white arrows) reflecting their high angiogenic potential. (O) VgatECKO pv ecs failed to form robust tubes (yellow arrows), signifying impaired angiogenesis. (P-R) Quantification of number of junctions and tubules analyzed by Wimasis and quantification of the angiogenesis score28; Data represent mean ± SD (n = 10, *P < 0.05, Student's t-test). (S, T) Claudin 5 expression was decreased in E16 VgatECKO dorsal telencephalon (T) when compared to Vgatfl/fl(S) telencephalon, illustrating loss of tight junctions (n = 10). (U, V) Images of IgG staining from E17 Vgatfl/fl and VgatECKO dorsal telencephalon. While IgG was localized to Vgatfl/fl vessels (white arrows, U), IgG leakage was observed from VgatECKO vessels in dorsal and medial telencephalon (yellow arrows, V). (W) High-magnification images of IgG leakage (yellow arrows) from VgatECKO vessels in the dorsal telencephalon. (X, Y) E18 VgatECKO and littermate controls were given a trans-cardiac perfusion of biotinylated dextran. VgatECKO tissue sections stained with streptavidin-Alexa 594 showed increased fluorescence (X) which was quantified and permeability relative to control was graphed (Y; n = 10, *P < 0.05, mean ± SD, Student's t-test). Scale bars: A, 50 μm (applies to S, T, W, X), B, 15 μm (applies to C, E, G), D, 100 μm (high-magnification inset 30 μm); F, 75 μm, I, 100 μm (applies to I, J, L, N, O, U, V).