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Maternal genotype
effects can alias case
genotype effects in
case–control studies
European Journal of Human Genetics (2008) 16, 783–785;
doi:10.1038/ejhg.2008.74; published online 9 April 2008;

With the increasing popularity of case–control association

studies in human genetics, it is worth recalling that other

genetic mechanisms may masquerade as case genotype

effects. In particular, in a case–control study, any maternal

genotype effects are aliased with case genotype effects. The

maternal genotype partially determines the uterine envi-

ronment, leading to the possibility of detrimental effects in

the developing fetus. Such maternal genotype effects have

been implicated in developmental disorders, such as spina

bifida and autism.1–4 Maternal–fetal interactions are a

separate phenomenon not discussed here.5

When an allele contributes to susceptibility only in the

mother, the offspring will be enriched for that allele simply

by Mendelian inheritance. At a locus with two alleles A and

a, with frequencies p and q¼1�p, respectively, let r1
m be the

relative risk of disease given a single copy of A in the

mother and r2
m the relative risk of disease given two copies

of A in the mother. Writing Dc for ‘disorder present in the

child,’ M for the number of copies of the A allele in the

mother, and C for the number of copies of the A allele in

the child, we have

PðDcjC ¼ jÞ ¼
X

i

PðDcjM ¼ i;C ¼ jÞPðM ¼ ijC ¼ jÞ

¼
X

i

PðDcjM ¼ iÞPðM ¼ ijC ¼ jÞ

¼b
X

i

rmi PðM ¼ ijC ¼ jÞ

where b is the prevalence of the disorder among offspring

with mothers with genotype aa and r0
m¼1. The conditional

frequencies, under Hardy–Weinberg equilibrium, of the

mothers’ genotypes can be easily calculated6 but are given

in Table 1 for easy reference.

By way of example, suppose p¼0.1, r2
m¼2, and r1

m¼1.5.

For an aa child, by Table 1, the probability of an Aa mother
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is p¼0.1 and the probability of an aa mother is q¼0.9. The

Aa mother gives an elevated risk of 1.5 times baseline to her

child, whereas the aa mother gives the baseline risk to her

child. Thus an aa child has 0.1�1.5þ0.9� 1¼1.05 times

the baseline risk. Similarly, an AA child has an AA mother

with probability 0.1 and an Aa mother with probability 0.9,

so that child’s risk is 0.1�2þ 0.9�1.5¼1.55 times the

baseline risk. Thus, the apparent relative risk of an AA child

relative to an aa child is 1.55/1.05¼1.48. For an Aa child,

the probability of an AA mother is 0.05, that of an Aa

mother 0.5, and that of an aa mother is 0.45, so an Aa

child’s risk is 0.05�2þ0.5� 1.5þ0.45�1¼1.3 times

baseline, with apparent relative risk (relative to an aa

child) equal to 1.3/1.05¼1.24. As this example illustrates,

the apparent risk for the case’s genotype will be attenuated

from the actual risk for the mother’s genotype. General

expressions for relative risks based on the formula above

and Table 1 are given in the upper panel of Table 2.

Even the mode of inheritance can be masked: a recessive

model in mothers (so that r1
m¼1) will appear to be additive

in the cases, with the apparent relative risk of AA equal to

1þ p(r2
m�1) and the apparent relative risk of Aa equal to

1þ p(r2
m�1)/2. Similarly, a multiplicative model in

mothers, with r2
m¼ (r1

m)2, will generate an apparently

additive model in cases with the apparent case relative

risk of AA equal to 1þ (r1
m�1) and of Aa equal to

1þ (r1
m�1)/2.

It is important to note that these apparent relative risks

will reappear in a replication study; they are a function

of the underlying biology and the study design, not an

artifact of chance. Unlike the effects of population

stratification on the results of a case–control design, the

aliasing of maternal and case-genetic effects cannot be

resolved by more refined statistical techniques. The use of

family designs, however, can allow maternal and case

effects to be distinguished.7–9 The log-linear test,7 in

particular, can be used with a case–parents design to

estimate maternal effects independently of case effects, as

well as allowing a test of parental imprinting.

A ‘mothers of cases’ and controls study also cannot

distinguish between maternal effects and case effects.

Table 2 shows the apparent relative risks for mothers when

there is a case genotype effect based on similar calculations

as above. For completeness, the table also shows the

apparent relative risks for mothers when there is a maternal

imprinting effect on cases.

Although family-based designs offer excellent robustness

to population stratification, they cost more per case than

case–control designs and involve more difficult ascertain-

ment. For example, among the six studies in the Genetic

Association Information Network,10 one is a family-based

design. Thus just one of these high-profile genome-wide

association studies can distinguish the effects on cases due

to the maternal genotype, by the uterine environment,

from the direct effects of genotype on the cases. The vast

preponderance of genes can be expected to act directly in

subjects. However, until the biological mechanism of a

suspected causal variant is determined, given only case–

control association studies, we must recall that a statistical

association is only an association. In addition to con-

founders, such as population stratification, there is the

question of whether the statistical association of a disorder

is really with one’s genotype or with one’s mother’s

Table 1 Conditional probability of mother’s genotype
given child’s genotype

Probability that mother has genotype

AA Aa Aa

Given: child AA p q 0
Given: child Aa p/2 1/2 q/2
Given: child aa 0 p q

Table 2 Apparent relative risks

Maternal effect

Parameter Analysis of cases
versus controls

Analysis of mothers
of cases versus
mothers of controls

Apparent relative
risk of Aa 1þrm1 þ pðrm2 � 1Þ

2þ 2pðrm1 � 1Þ

r1
m

Apparent relative
risk of AA rm1 þ pðrm2 � rm1 Þ

1þ pðrm1 � 1Þ

r2
m

Case effect

Parameter Analysis of cases
versus controls

Analysis of mothers
of cases versus
mothers of controls

Apparent relative
risk of Aa

r1
c

1þrc1 þ pðrc2 � 1Þ
2þ 2pðrc1 � 1Þ

Apparent relative
risk of AA

r2
c

rc1 þ pðrc2 � rc1Þ
1þ pðrc1 � 1Þ

Maternal imprinting effect

Parameter Analysis of cases
versus controls

Analysis of mothers
of cases versus
mothers of controls

Apparent relative
risk of Aa

(ri+1)/2 (ri+1)/2

Apparent relative
risk of AA

ri ri
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genotype. A family-based association study can give a

direct answer.
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