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A bstract
A  grow in g  b ody  o f ev idence , inc lud ing  stud ies  
using genetically engineered m ouse m odels, has  
show n that C a2+ cycling and C a2+-dependent sig -
na ling  pa thw ays  p lay  a  p ivo ta l ro le  in  card iac  
hypertrophy and  heart fa ilure. In  addition , recent 
s tu d ies  iden tified  th at m u ta tions  o f th e  genes 
encod in g  sarco p lasm ic  re ticu lum  (S R ) p ro te in s  
cau se  h um an  card iom yopath ies  an d  le th a l ven -
tricu lar a rrhy th m ias . The  reg u la tio n  o f C a 2+ ho -
m eostasis via  the SR proteins m ay have potential 
therapeutic value for heart d iseases such as  
card iom yopathy, heart failure and arrhythm ias.
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In troduction
Calcium is not only indispensable for normal muscle 
contraction and relaxation but also important as a 
second messenger of various signaling pathways in 
the heart. A growing body of evidence has shown that 
Ca2+ homeostasis and Ca2+-dependent signaling path-
ways play a pivotal role in the development of cardiac 
hypertrophy, heart failure and arrhythmias. In this 
regard, two issues regarding the role of Ca2+ in the 
heart are attracting considerable attention. One is the 
discovery of Ca2+/calmodulin-dependent calcineurin 
signaling pathway in cardiac hypertrophy (Olson and 
Williams, 2000; Wilkins and Molkentin, 2002) and the 
other is to identify the critical role of cardiac Ca2+ 
cycling in cardiomyopathy, heart failure and arrhyth-
mias (Chien, 2000; Houser et al., 2000; Scoote and 
Williams, 2002). In this review, we focus on the latter 
topic, especially on Ca2+ cycling proteins in the 
sarcoplasmic reticulum (SR). 

The regu lation of C a 2+ re lease and
uptake via the card iac sarcop lasm ic
re ticu lum
Periodic changes in Ca2+ concentration in cardio-
myocytes are essential for cardiac contraction and 
relaxation, and the intracellular Ca2+ concentration is 
integrally regulated by proteins associated with the 
SR, an extensive intracellular membrane system. The 
SR consists of lipid bilayer organelle that surrounds 
each myofibril. In response to membrane depolari-
zation, a small amount of extracellular Ca2+ enters the 
cardiomyocyte through the L-type Ca2+ channels. The 
Ca2+ influx triggers the release of Ca2+ from the SR 
into the cytosol through the cardiac ryanodine re-
ceptor (RyR2), initiating cardiac contraction. This 
event is known as Ca2+ induced- Ca2+ release. The 
relaxation is predominantly mediated by Ca2+ se-
questration from the cytosol into the SR lumen via 
the SR calcium ATPase 2a (SERCA2a). The activity 
of the RyR2 and SERCA2a are known to be under 
fine-tuning by their intrinsic regulatory domains and 
associated SR proteins. 
  The RyR2 forms homotetramers consisting of 4 
monomeric subunits, each of about 565-kDa to 
produce a bona fide ion channel. The subunit con-
tains a high-conductance Ca2+-selective pore, Ca2+ 
activation and inactivation sites, several phosphoryla-
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tion sites, and multiple binding sites for a myriad of 
endogenous regulators including ATP, Mg2+, and cal-
modulin. The RyR2 also forms a macromolecular 
complex by protein-protein interactions, including 
protein kinase A (PKA) and its anchoring protein 
(mAKAP), the protein phosphatases PP1 and PP2A, 
sorcin, calmodulin, a FK506 binding protein (FKBP12.6), 
and other proteins in the cytosol (Marks et al., 
2002a). In the luminal region of junctional SR mem-
brane, the RyR2 is also associated with cardiac 
calsequestrin (CSQ), triadin, junctin, and junctate, 
which are all required for appropriate regulation of the 
Ca2+ release from the RyR2 (Muller et al., 2002). 
Although cAMP-dependent PKA signal pathway plays 
the most important role in the regulation of the 
RyR-mediated Ca2+ release, the function of the RyR2 
is regulated by many other factors, including several 

regulatory domains and protein-protein interactions 
with many molecules.
  CSQ is a 55-kDa high capacity, moderate affinity 
Ca2+-binding protein localized to the lumen of the 
junctional SR in cardiac muscle. CSQ forms a dense 
matrix in the SR lumen, where the protein appears 
to be physically connected to the RyR2 by anchoring 
strands. Biochemical evidence suggests that CSQ 
actively participates in muscle contraction by regulat-
ing the amount of luminal Ca2+ store (Sitsapesan and 
Williams, 1997). This regulatory effect of CSQ may 
be mediated by CSQ-anchoring proteins such as 
triadin and junctin (Zhang et al., 1997). Triadin was 
first identified as a 95-kDa protein in skeletal muscle 
junctional SR membrane (Caswell et al., 1991) and 
subsequently three cardiac triadin isoforms (triadin 1, 
2 and 3) were cloned. Junctin was originally identified 

F ig u re  1 . Major cardiac SR proteins involved in Ca2+ cycling in cardiomyocytes. The Ca2+ movement was demonstrated by blue broken lines.
The right-sided panel shows the enhanced Ca2+ release and uptake by β -adrenergic stimulation via cAMP-dependent PKA signal pathway. PKA
phosphorylates L-type Ca2+ channels (LCC), the cardiac ryanodine receptor (RyR2) and phospholamban (PLN). The phosphorylated RyR2 is 
dissociated from FKBP12.6, resulting in pronounced channel open probability. Phosphorylated PLN relieves its inhibition on SERCA2a activity,
resulting in an increase in Ca2+ uptake into the SR. Junctophilin type 2 (JP2) is a membrane spanning protein between the sarcolemmal membrane
and the SR. Sorcin is a penta-EF hand Ca2+-binding protein that binds directly to both RyR2 and the LCC. The RyR2 is also associated with
cardiac calsequestrin (CSQ2), triadin, junctin, and junctate. CSQ2 and sarcalumenin (SAR) are Ca2+-binding proteins localized in the junctional
and longitudinal SR, respectively. Sarcolipin (SLN) that is expressed predominantly in the atria may inhibit SERCA2a activity.
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as a 26-kDa major CSQ-binding protein in cardiac 
and skeletal muscle junctional SR membranes (Jones 
et al., 1995). Although triadin and junctin are the 
products of different genes, they exhibit intriguing 
structural and amino acid sequence similarities and 
play an important role in the regulation of Ca2+ re-
lease from the RyR2. Junctate, an alternative splicing 
form of the same gene generating junctin and aspartyl 
β-hydroxylase, is a newly identified 33-kDa Ca2+ bind-
ing protein in the integral SR membrane and three 
cardiac isoforms (junctate 1, 2 and 3) were cloned 
from the mouse heart (Treves et al., 2000; Hong et 
al., 2001).
  Crosstalk between L-type Ca2+ channels on the 
sarcolemmal membrane and the RyR2 on the SR is 
a fundamental feature of excitation-contraction (EC) 
coupling in the heart. Junctophilin type 2 (JP2), a 
cardiac isoform of JP family, has been recently iden-
tified as a membrane spanning protein that contri-
butes to the formation of the junctional membrane 
complexes between the sarcolemmal membrane and 
the SR (Takeshima et al., 2000). JP2 is an essential 
component for the stabilization of the junctional 
membrane complexes and may play an important role 
in maintaining normal functional coupling of Ca2+ 
induced-Ca2+ release.
  SERCA2a, a cardiac and slow-twitch skeletal mus-
cle isoform of SERCA family that belongs to P-type 
ATPases, is the primary regulator of the rate of Ca2+ 
re-uptake during relaxation in the heart (Periasamy 
and Huke, 2001). The activity of SERCA2a is mainly 
regulated by its endogenous inhibitor, phospholamban 
(PLN). PLN, a 52 amino acid SR transmembrane 
phosphoprotein, inhibits Ca2+ uptake to interact with 
SERCA2a at their cytoplasmic and transmembrane 
domains. Phosphorylated PLN relieves its inhibition on 
SERCA2a activity, resulting in an increase in Ca2+ 
uptake into the SR (Frank and Kranias, 2000).
  Sarcolipin has been identified as a counterpart of 
PLN in skeletal muscle (Odermatt et al., 1998). The 
expression of mouse sarcolipin mRNA, however, was 
most abundant in the atria and was undetectable in 
the ventricles, indicating an atrial chamber-specific 
expression pattern in the heart (Minamisawa et al., 
2003b). Atrial chamber-specific expression of sar-
colipin mRNA was increased during development and 
was down-regulated in the atria of hypertrophic heart. 
In human, sarcolipin mRNA was also expressed in the 
atria, but not detected in the ventricles. Therefore, 
sarcolipin is likely to be an atrial chamber-specific 
regulator of Ca2+ cycling in the heart. It is intriguing 
to know whether sarcolipin plays an important role in 
the atrium-specific cardiac disorders such as atrial 
fibrillation. 
  Sarcalumenin is a Ca2+-binding protein localized in 
the longitudinal SR. Sarcalumenin isoforms are 

generated as 160- and 53-kDa glycoproteins by the 
alternative splicing of the primary transcript derived 
from its gene, and are specifically expressed in 
skeletal and cardiac muscle cells (Leberer et al., 
1990). The amino-terminal half of the 160-kDa isoform 
is characterized by the juxtapositions of negatively 
charged residues resembling to that of CSQ. Although 
several studies have suggested that sarcalumenin 
works as a Ca2+-buffering protein like CSQ and 
regulates SERCA activity (Martin, 1990), the physio-
logical role of sarcalumenin remains largely unknown 
at the present.
  The functional relevance between β-adrenergic 
sysytem/cAMP-dependent PKA signal pathway and 
Ca2+ cycling in the heart has been warranted (Figure 
1). cAMP-dependent PKA signal pathway plays a 
pivotal role in the regulation of Ca2+ release and 
uptake in the SR. Marx et al. demonstrated that the 
phosphorylated RyR2 by PKA is dissociated from 
FKBP12.6, resulting in pronounced channel open pro-
bability. Furthermore, the hyperphosphorylated RyR2 
increased SR Ca2+ leak from the SR in patients with 
heart failure (Marx et al., 2000). Yano et al. also 
found that the binding of FKBP12.6 to the RyR2 was 
decreased in pacing-induced heart failure when com-
pared with normal hearts (Yano et al., 2000). As to 
Ca2+ uptake into the SR, phosphorylation at PLN 
serine-16 by PKA is the predominant event leading 
to a proportional increase in the rate of Ca2+ uptake 
and accelerates ventricular relaxation (Colyer, 1998). 
PLN is considered to be mostly responsible for the 
effects of β-adrenergic stimulation on cardiac con-
tractility and relaxation, since PLN deficient mice 
display the maximal contraction without β-adrenergic 
stimulation (Luo et al., 1994). A decrease in PLN 
phosphorylation has been demonstrated in patients or 
animal models of heart failure, resulting in a decrease 
in Ca2+ uptake into the SR (Schmidt et al., 1999; 
Sande et al., 2002). Therefore, abnormal β-adrener-
gic/cAMP-dependent PKA signal pathway induces the 
imbalance of Ca2+ release and uptake in the SR, 
resulting in the reduced Ca2+ content in the SR. This 
is a central physiological hallmark of a number of 
animal models of heart failure, as well as in human 
failing hearts.

G enetica lly eng ineered an im al m odels
Genetically engineered mice, such as transgenic and 
knockout mice, have proved to be extremely useful 
for understanding the regulation of many molecules 
involved in EC coupling and Ca2+ cycling in the heart, 
and have given strong insights for pathophysiological 
roles of the SR proteins (Kadambi and Kranias, 1998; 
Dillmann, 1999).
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T a b le  1 . Genetically engineered animal model.
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Transgene Cardiac phenotypes References
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RyR-2 KO Embryonic lethal w ith morphological abnormalities in the Takeshima, 1998 EMBO J

 heart tube 
Large vacuolate SR and structurally abnormal m itochondria

FKBP12 KO Embryonic lethal w ith severe dilated cardiomyopathy and Shou,1998 Nature
  ventricular septal defects

Noncompaction of left ventricular myocardium 
FKBP12.6 KO Cardiac hypertrophy in the male but not in the female Xin,2002 Nature

Loss of myofibril organization
Exercise-induced vetricular tachycardia W ehrens, 2003 Cell

Sorcin TG Impaired contraction and relaxation without overt cardiac Meyers, 2003 J Biol Chem
 hypertrophy

Junctin TG Generalized cardiomegaly with systolic dysfunction Zhang, 2001 J  Mol Cell Cardiol
Bradycardia and atrial fibrillation Hong, 2002 FASEB J
Increased fibrosis Kirchhefer, 2003 Cardiovas Res

Triadin 1 TG Cardiac hypertrophy with impaired contractility and relaxation Kirchhefer, 2001 J Biol Chem
Junctate 1 TG Dilated cardiomyopathy with severe systolic dysfunction Cho, 2003 J Am Coll Cardiol

Bradycardia with various arrhythm ias 
CSQ2 TG Cardiac hypertrophy with systolic dysfunction Sato,1998 J Biol Chem

Cho, 1999  J Biol Chem
SERCA2 KO Embryonic lethal in homozygous m ice Periasamy, 1999 J Biol Chem

Impaired contraction and relaxation in heterozygous m ice Ji, 2000 J Biol Chem
SERCA2a KO High incidence of perineonatal mortality and cardiac Ver Heyen, 2001 Cir Res

 malformations
Mild cardiac hypertrophy with impaired cardiac contractility
 and relaxation

SERCA2a TG Enhanced cardiac contractility and relaxation He, 1997 J Clin Invest
Baker, 1998 Cir Res

SERCA1 TG Enhanced cardiac contractility and relaxation Loukianov, 1998 Cir Res
SERCA2b TG Enhanced cardiac contractility and relaxation Greene, 2000 J Biol Chem
mutant SERCA2a K397/400E, lack of a functional association with PLN Nakayama, 2003 FASEB J 
 TG Enhanced cardiac contractility and relaxation
PLN KO Enhanced cardiac contractility and relaxation Luo, 1994 Cir Res
PLN TG Impaired cardiac contractility and relaxation without overt Kadambi, 1996 J Clin Invest

 cardiac remodeling (2-fold overexpression)
Heart failure with aging (4-fold overexpression) Dash, 2001 Circulation

mutant PLN TG
C41F Monomeric form of PLN; Less pronounced inhibitory effect Chu, 1998 Cir Res

 when compared with wild-type PLN
S16A, T17A Non-phosphorylatable form of PLN; Maximal inhibition of Brittsan, 2000 J Biol Chem

 SERCA2a activity
L37A, I40A Monomeric, dominant-acting, superinhibitory PLN; Impaied Zvaritch, 2000 J Biol Chem

 contractility with cardiac hypertrophy 
V49G A superinhibitor of SERCA2a affinity for Ca2+; Impaired Haghighi, 2001 J Biol Chem

 cardiac function and heart failure
N27A A PLN hinge domain mutant; Impaired cardiac function and Schmidt, 2002 Cardiovasc Res

 heart failure
S16E A pseudophosphorylated PLN; Enhanced cardiac contractility Hoshijima, 2002 Nat Med

 and relaxation
R9C Blockade of PKA-mediated PLN phosphorylation; Impaired Schmidt, 2003 Science

 cardiac function and heart failure
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  Knockout mice lacking RyR2 die at approximately 
embryonic day 10 with morphological abnormalities in 
the heart tube. Prior to embryonic death, large 
vacuolate SR and structurally abnormal mitochondria 
began to develop in the knockout cardiomyocytes, 
and the vacuolate SR appeared to contain high con-
centrations of Ca2+. This result suggests that RyR2 
is absolutely required for cellular Ca2+ homeostasis 
most probably as a major Ca2+ release channel to 
maintain the developing SR (Takeshima et al., 1998). 
Alterations in RyR2 accessory proteins are also 
associated with pathogenesis in the heart. Ablation of 
FKBP12.6 gene caused cardiac hypertrophy in male 
mice, but not in female, despite the similar dysregula-
tion of Ca2+ release in male and female knockout 
mice (Xin et al., 2002). FKBP12.6-null mice consis-
tently exhibited exercise-induced cardiac ventricular 
arrhythmias that cause sudden cardiac death. (Weh-
rens et al., 2003). Since FKBP 12.6 stabilizes RyR2 
channel activity and prevents aberrant activation of 
RyR2 during the resting phase of the cardiac cycle, 
this data suggests that unstable RyR2 channel can 
induce life-threatening arrhythmias. Although FKBP12 
is predominantly associated with skeletal RyR (RyR1), 
FKBP12-deficient mice displayed severe dilated car-
diomyopathy and ventricular septal defects without 
abnormality in skeletal muscle (Shou et al., 1998).
  Sorcin is a penta-EF hand Ca2+-binding protein that 
binds directly to both RyR2 and the L-type Ca2+ 
channel. The transgenic mice exhibited no cardiac 
hypertrophy and no change in expression of other 
calcium regulatory proteins. However, significant re-
ductions in global indices of contraction and relaxation 
were observed in the transgenic hearts. In addition, 
Ca2+ transient amplitudes were significantly depressed 
and the Ca2+ currents (ICa) inactivation rate of the 
L-type Ca2+ channel was significantly accelerated in 
transgenic myocytes (Meyers et al., 2003).
  Overexpression of the junctin under the control of 
α-myosin heavy chain promoter caused bi-atrial and 
bi-ventricular enlargements, impaired LV systolic func-
tion, bradycardia, atrial fibrillation, and increased 
fibrosis (Zhang et al., 2001; Hong et al., 2002; 
Kirchhefer et al., 2003). Transgenic mice overex-
pressing triadin 1 in atria and ventricles demonstrated 
cardiac hypertrophy and impaired contractility and 
relaxation (Kirchhefer et al., 2001). Cardiac-specific 
overexpression of junctate 1 resulted in dilated cardio-
myopathy with severely depressed LV systolic func-
tion and various arrhythmias such as atrial fibrillation, 
ventricular premature beats and sinus pause. The 
reduced SR Ca2+ content, enhanced L-type Ca2+ cur-
rent density, and the prolonged action potential dura-
tion may account for the bradycardia in the junctate 
1 transgenic heart (Cho et al., 2003). Thus, the 
transgenic mice with cardiac-specific overexpression 

of triadin 1, junctin and junctate 1 show distinct car-
diac phenotypes, suggesting that these junctional SR 
transmembrane proteins are of functional relevance 
for the regulation of the SR Ca2+ release in the heart. 
  To elucidate the physiological significance of car-
diac CSQ (CSQ2) in the cardiac excitation-contraction 
coupling, two independent lines of transgenic mice 
overexpressing CSQ2 in the heart have been gen-
erated (Jones et al., 1998; Sato et al., 1998). Al-
though cardiac-targeted overexpression of CSQ2 
results in a marked increase in SR Ca2+ storage in 
the both models, SR Ca2+ release was impaired upon 
depolarization, leading to depressed contractile para-
meters and cardiac hypertrophy. Transition from 
concentric LV hypertrophy to overt heart failure was 
clearly demonstrated and defective β-adrenergic re-
ceptor signaling preceded the development of dilated 
cardiomyopathy (Cho et al., 1999). These findings 
suggest that chronic suppression of Ca2+ release 
caused by overexpression of CSQ2 or the excess 
amount of CSQ2 per se also initiate a cascade of 
molecular events that activates the program of cardiac 
hypertrophy and/or heart failure. In contrast, no phe-
notypic feature of heart failure was observed up to 
17 months of age in ventricles of the model of Sato 
et al., which expresses higher amount of CSQ2 in the 
myocardium, suggesting that endogenous traits of the 
mouse strains also influence the outcomes (Sato et 
al., 2003).
  The genetic ablation of JP2 in mice caused wider 
gap size of the junctional membrane complexes and 
deficient [Ca2+]i transients in cardiomyocytes, resulting 
in embryonic lethality (Takeshima et al., 2000). These 
findings indicate that JP2 is essential to form normal 
junctional membrane complexes and efficient Ca2+ 
induced-Ca2+ release in the heart. The expression of 
JP2 was up-regulated during normal development and 
was down-regulated in a hypertrophic or dilated car-
diomyopathic mouse model (Minamisawa et al., 
unpublished data). JP type 1 (JP1) is a skeletal 
muscle type of JP isoforms. JP1 knockout mice died 
shortly after birth and exhibited deficiency of triad 
junctions and contraction in skeletal muscles (Ito et 
al., 2001). Transgenic mice overexpressing JP1 exi-
bted abnormal junctional membranes, in which the 
T-tubules were rolled up with the SR membranes. 
However, authentic triad formation was not induced 
by JP1 overexpression in cardiac myocytes, suggest-
ing that ectopic JP1 expression cannot convert the 
diad to the triad in cardiac myocytes (Komazaki et 
al., 2003).
  Two independent groups generated transgenic mice 
overexpressing SERCA2a in the heart. The increase 
in SERCA2a expression resulted in myocardial con-
tractility and relaxation by increasing SR Ca2+ trans-
port (He et al., 1997; Baker et al., 1998). Transgenic 
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mice overexpressing a high calcium affinity SERCA2a 
mutant (K397/400E), lacking a functional association 
with PLN, were also generated. The transgenic 
mouse hearts showed increased contraction and 
relaxation, with increases in the amplitude of Ca2+ 
transient and rapid Ca2+ decay (Nakayama et al., 
2003). Moreover, transgenic mice overexpressing the 
fast-twitch skeletal muscle type of SERCA (SERCA1a) 
(Loukianov et al., 1998) or SERCA2b (Greene et al., 
2000) in a heart-specific manner were also gen-
erated. Both mice demonstrated enhanced myocardial 
contractility and increased Ca2+ transport function, 
indicting that both SERCA isoforms can substitute for 
SERCA2a in vivo. 
  Complete ablation of SERCA2 (both SERCA2a and 
2b) resulted in embryonic lethality (Periasamy et al., 
1999). Heterozygous mutant hearts that expressed 
65% of the protein levels of SERCA2 compared with 
wild-types showed impaired cardiac contractility and 
relaxation (Ji et al., 2000). When SERCA2a gene was 
specifically ablated, homozygous mutant hearts ex-
pressed only SERCA2b of which the protein levels 
were reduced to 40% of total SERCA2 in wild-type 
mice. SERCA2a deficiency led to increased incidence 
of perineonatal mortality and cardiac structural 
malformations as well as mild cardiac hypertrophy 
with impaired cardiac contractility and relaxation (Ver 
Heyen et al., 2001). This data indicates that 
SERCA2a is essential for normal cardiac development 
and function. 
  Transgenic mice expressed two-fold higher levels 
of PLN in the heart displayed impaired cardiac con-
tractility and relaxation without any phenotypic altera-
tions including heart-to-body mass ratio, cardiomyo-
cyte size and morphology (Kadambi et al., 1996). 
However, transgenic mice overexpressing PLN at 
4-fold normal levels exhibited the development of 
overt heart failure and a premature mortality with 
aging (Dash et al., 2001). To elucidate whether the 
site-specific mutations of PLN alter cardiac contracti-
lity and relaxation, more than 10 transgenic mice 
overexpressing various types of mutant PLN have 
been also generated (Chu et al., 1998; Brittsan et al., 
2000; Zvaritch et al., 2000; Haghighi et al., 2001; 
Hoshijima et al., 2002;  Schmidt et al., 2002; Schmitt 
et al., 2003). Among them, an increase in cardiac 
contractility and relaxation is detected only in the 
transgenic mice overexpressing a S16E peudo-phos-
phorylated PLN mutant (Hoshijima et al., 2002). 
Several transgenic mice exhibited impaired cardiac 
contractility and relaxation, resulting in cardiac remod-
eling such as cardiac hypertrophy (Zvaritch et al., 
2000) and heart failure (Haghighi et al., 2001; Sch-
midt et al., 2002; Schmitt et al., 2003). 
  Mice heterozygous and homozygous for the PLN- 
ablated gene have been extensively evaluated by Dr. 

Kranias and her colleagues (Kadambi and Kranias, 
1998). Reduction or ablation of PLN resulted in 
"supernormal" cardiac contraction and relaxation with-
out any phenotypic alterations at the gross mor-
phology or ultrastructural levels in mice (Luo et al., 
1994). 

H um an card iom yopathy caused by
genetic m utations in C a 2+ cycling
m olecu les  
Cardiomyopathy is defined as a disease of the 
myocardium associated with cardiac dysfunction by 
either intrinsic/genetic disorders of myocardium, or 
extrinsic specific events like ischemia, pressure and 
volume overloads, abnormal metabolism, inflammation 
or toxic agents. Primary cardiomyopathy is a group 
of intrinsic disorders of the myocardium. To date, 
more than 20 genes have been identified as being 
responsible for cardiomyopathy. Despite the diverse 
etiologies, Ca2+ cycling defect is a physiological 
hallmark of all forms of cardiomyopathy. Therefore, 
the genes involved in Ca2+ cycling have been con-
sidered responsible for cardiomyopathy, and candi-
date gene approach has been employed in many 
laboratories. 
  In this regard, mutations in the RyR2 have been 
identified as the cause of arrhythmogenic right ven-
tricular dysplasia (ARVD), a specific type of cardio-
myopathy (Tiso et al., 2001). This is the first SR gene 
which causes cardiomyopathy. Mutations in the RyR2 
also cause cathecholamine-induced polymorphic ven-
tricular tachycardias (Marks et al., 2002b). These data 
indicate that RyR2 is responsible not only for cardio-
myopathy and heart failure, but also for life-threa-
tening arrhythmias. 
  Two independent groups have recently found that 
mutations of the PLN gene cause human dilated 
cardiomyopathy. One is a missense mutation at 
residue 9 (Arg→Cys) which is proposed to block 
PKA-mediated phosphorylation of PLN (Schmitt et al., 
2003). The other is a nonsense mutation at residue 
39 (Leu→stop) (Haghighi et al., 2003). In the former 
study, they generated Arg9Cys mutant PLN trans-
genic mice, in which PKA-mediated phosphorylation 
of PLN at serine 16 was blocked. The decay of Ca2+ 
transient was delayed in mutant myocytes, indicating 
impaired Ca2+ uptake. The mice recapitulated human 
heart failure. In the latter study, the heterozygous 
individuals with Leu39stop mutation exhibited hyper-
trophy without decreased contractile performance, and 
individuals homozygous displayed the diminished 
expression of PLN in the SR (null PLN) and dilated 
cardiomyopathy. The authors claimed that PLN is 
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essential to maintain normal cardiac function in 
human, in contrast to mice in which PLN deficiency 
enhances cardiac contractility and relaxation without 
any adverse effects. These opposite results from 
different species have to be verified in detail, since, 
as we will discuss later, PLN is thought to be one 
of the prime targets for novel therapeutic invention of 
heart failure. 
  In addition, a single nucleotide transition, -77A→G, 
in the PLN promoter region was found in a patient 
with late-onset type of hypertrophic cardiomyopathy 
(Minamisawa et al., 2003a). The mutation was found 
to increase PLN promoter activity using neonatal rat 
myocytes, suggesting that -77A→G mutation in the 
PLN promoter region increases the PLN expression 
in the heart. The mutation has not been found more 
than normal 300 individuals so far. Therefore, the 
mutation in the promoter region may play an im-
portant role in the development of hypertrophic 
cardiomyopathy in human. Since different mutations 
in several sarcomeric proteins such as β-myosin 
heavy chain and troponin T cause dilated and hyper-
trophic cardiomyopathies (Seidman and Seidman, 
2001), PLN is also likely to be associated with both 
dilated and hypertrophic cardiomyopathies. Here, the 
genes involved in Ca2+ cycling have become the real 
candidates responsible for cardiomyopathy. It should 
be intriguing to investigate mutations of other SR 
genes in patients with cardiomyopathy.

L ife-th reaten ing ventricu lar arrhythm ias
caused by genetic m utations in C a 2+

cycling m olecu les
A growing body of evidence indicates that mutations 
of RyR2 and CSQ2 cause catecholaminergic poly-
morphic ventricular tachycardia (CPVT) and ARVD2 
(Lahat et al., 2001; Laitinen et al., 2001; Bauce et 
al., 2002; Postma et al., 2002; Priori et al., 2002; 
Lahat et al., 2003). Although the molecular mecha-
nisms underlining the relation between genotypes and 
phenotypes remain unclear, one may assume that the 
greater amount of Ca2+ release from the mutant 
hearts may induce an elevated diastolic cytoplasmic 
Ca2+ during exercise- or catecholamine-induced stress, 
resulting in diastolic afterdepolarizations that can 
initiate fatal ventricular tachyarrhythmias. This in-
creased Ca2+ release can be mediated by FKBP12.6. 
Recently, Wehrens et al demonstrated that a deri-
vative of 1,4-benzothiazepine (JTV519) increased the 
affinity of FKBP12.6 for RyR2, which stabilized the 
closed state of RyR2 and prevented the Ca2+ leak 
that triggers arrhythmias (Wehrens et al., 2004). Thus, 
further investigation of mutations in other SR genes 
related to Ca2+ release such as FKBP12.6, triadin 1 

and junctin will be warranted.

The m odulation of the S R pro te ins is
poten tia l therapeutic stra tegy for
card iom yopathy , heart fa ilu re , and
arrhythm ias

Our current therapy for cardiomyopathy and heart 
failure is primarily palliative and is not biologically 
targeted because of poor understanding in stress 
pathways leading to the progression of cardiac 
muscle dysfunction. The lessons from animal studies 
and human genetics revealed, however, that a 
decrease in Ca2+ uptake due to reduced SERCA2a 
activity and an increase in Ca2+ leak from the SR due 
to instability of the RyR2 play an important role in 
the development of cardiomyopathy, heart failure and 
arrhythmias. Therefore, the restore of the SR function 
may be novel therapeutic strategy for these abnor-
malities. 
  Genetic approaches and pharmacological interven-
tions, designed to increase SERCA2a activity or 
inhibit PLN function, may prove valuable in preventing 
or reversing the adverse physiological impairment in 
cardiomyopathy and heart failure. It may be a fun-
damental approach to increase SERCA2a activity by 
simply increasing the expression level of SERCA2a. 
This can be achieved through SERCA2a gene 
transfer. Dr. Hajjar's group demonstrated that muscle 
contractility and relaxation were restored by adeno-
virus-mediated SERCA2a gene transfer in an animal 
model of pressure overload (Miyamoto et al., 2000) 
as well as in cardiomyocytes from patients with heart 
failure (del Monte et al., 2001). They recently demon-
strated that improving intracellular Ca2+ cycling by 
overexpression of SERCA2a restored contractile func-
tion and reduced ventricular arrhythmias during car-
diac ischemia-reperfusion (del Monte et al., 2004).
  Inhibition of PLN function or disruption of the 
interaction between PLN and SERCA2a is an alter-
native way to increase SERCA2a activity. Reduction 
of PLN expression by decreasing PLN transcription, 
or disrupting PLN mRNA stability seems to have 
promising value for pharmaceutical interventions to 
improve cardiac performance. Adenovirus-mediated 
antisense expression of PLN coding region resulted 
in the successful depression of PLN mRNA and 
protein and increased Ca2+ uptake in neonatal rat 
myocytes (He et al., 1999; Eizema et al., 2000). 
Inhibitory RNA (iRNA) for PLN mRNA can be an 
alternate to decrease PLN protein in the heart. Re-
cent studies demonstrated that certain PLN mutants 
increased contractility and relaxation of normal and 
pathological hearts when they were transferred into 
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myocytes and animal hearts using adenovirus or 
adeno-associated vector (Minamisawa et al., 1999; 
Hoshijima et al., 2002; Iwanaga et al., 2004). There-
fore, selective disruption of the interaction between 
SERCA2a and PLN is effective to prevent or reverse 
cardiac performance in dilated cardiomyopathy and 
heart failure. So far augmented SERCA2a activity has 
beneficial effects on the cardiac function in rodent 
models of heart failure. This can be a novel inotropic 
therapy for cardiac dysfunction, at least for a short 
period. However, it should be carefully evaluated 
whether augmented SERCA2a activity affects mor-
bidity and mortality in human for a long period, since 
a null PLN mutation causes dilated cardiomyopathy 
in human described above (Haghighi et al., 2003).
  In addition to reduced SR Ca2+ uptake, increased 
Ca2+ leak through RyRs is a significant component of 
altered EC coupling in heart failure. A leak of Ca2+ 
from the SR decreases SR Ca2+ content and release 
of systolic Ca2+, and it may be a trigger for arrhy-
thmias. Moreover, altered cytosolic Ca2+ by increased 
Ca2+ leak may contribute to altered gene expression 
and myocardial remodeling. FKBPs are a good 
candidate to stabilize the RyR to reduce the leak of 
Ca2+ through RyRs. In this regard, Prestle et al. 
demonstrated that Ca2+ leak through RyRs was 
reduced in adenoviral mediated FKBP12.6 overex-
pressed cardiomyocytes (Prestle et al., 2001). Yao et 
al. recently reported that the prevention of Ca2+ leak 
through RyRs improved ventricular function and 
prevention of heart failure in a dog model, using the 
agent JTV519, which restores the FKBP12.6-mediated 
stabilization of RyR (Yano et al., 2003). JTV519 also 
prevented fetal ventricular arrhythmias caused by the 
Ca2+ leak from the RyR2 (Wehrens et al., 2004). 
Therefore, reducing SR leak is a promising approach 
to improve Ca2+ cycling of the failing heart as well 
as arrhythmias.
  More than 100 years after Ringer's discovery in-
dicating that Ca2+ is essential for normal muscle 
contraction, we have been realizing that the modula-
tion of intracellular Ca2+ concentration via manipulat-
ing the SR proteins is promising tactics to fight a 
monster syndrome, "heart failure". 
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