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In 2010, the United States reached a turning point, with more 
than half of office-based US physicians using an electronic 
health record (EHR) system. By 2012, the figure had risen to 
72%, up from 29% in 2003.1 The rapid adoption of EHRs was 
certainly due in part to the financial incentives offered by 
the 2009 Health Information Technology for Economic and 
Clinical Health (HITECH) Act, which reimbursed providers 
for the meaningful use of a certified EHR.

Individualizing the treatment of patients by taking into 
account individual risks and variations in treatment response 
has long been a goal of modern medicine.2 The idea of using 
genomics to further this vision has become widespread,3,4 aided 
by the plummeting cost of DNA sequencing.5

For those physicians who are not medical geneticists, education 
about genomics has lagged far behind the rate of the advances in 
genomic knowledge and technology.6 Guttmacher et al.7 note that 
for biomedical researchers, this is the “genome era,” but for “most 
clinicians the genome era has not yet arrived.” Although using 
genetic counselors has been the traditional medical approach, 
it may not scale to meet patient and physician needs. Indeed, 
Belmont and McGuire8 have gone so far as to argue that “with-
out the integration of a[n]…electronic health record, counseling 
patients on the basis of genome-wide data will be futile.”

Currently, the EHR systems that are in wide use do not offer 
much functionality to support genomics. A Rand Corporation 
study, “Are Electronic Health Records Ready for Genomic 
Medicine,” concluded that only 9% of those surveyed felt that 
EHRs currently had an impact on genetic/genomic medicine, 
whereas 36% thought there would be an impact over the next 
5–10 years.9 Those surveyed included EHR specialists, primary-
care clinicians, medical geneticists, and genetic counselors.

EHRs are the primary informatics and clinical decision 
support tools used by most physicians as well as the primary 

repositories of patient data. It thus seems logical that EHRs 
should support the storage and interpretation of genomic data 
and the use of genomic data in decision support. Ideally, EHRs 
would help make medical treatment more precise and aid in the 
genomic education of physicians and patients.

Although the HITECH Act created a regulatory environment 
that accelerated EHR adoption, the current phases I and II of 
EHR certification and meaningful use do not require specific 
genomics functionality and thus do not provide an incentive 
for EHR vendors to innovate in the genomics area.10–12 That 
being said, EHRs do continue to innovate in response to mar-
ket demands and technological advances. This review will cover 
many of the serious obstacles faced by widely deployed EHRs 
when implementing more complete genomic support.

GENOMIC DATA ARE CHALLENGING TO STORE 
IN WIDELY DEPLOYED EHRs

Normal characteristics and life cycle of EHR data
The normal characteristics and life cycle of EHR data are 
important to understand so that the challenges of incorporating 
genomic data into the EHR can be understood. Although EHR 
data structures vary by individual EHR,13 in the United States, 
due to certification requirements to qualify for provider reim-
bursement, the general method of storing core data is becom-
ing more uniform.10,11 One way of thinking about EHR data is 
to divide it into three very general types of patient-specific data: 
granular data, textual data, and images.11,14–16

Granular data consist of separate fields, each of which can in 
theory be separately accessed.17 For vital signs, one could store 
pulse, systolic blood pressure, diastolic blood pressure, temper-
ature, respiratory rate, and pO2 as separate fields. Along with 
date, time, and patient identity, they would form a database 
record. Similarly, numeric-value laboratory tests, such as serum 
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sodium, blood glucose, and potassium levels, can be stored as 
discrete values in separate fields, along with the date, time, and 
patient identity.

Typically for each patient, in this example, there is a relatively 
small number of vital signs and laboratory tests, with the most 
recent being the most important. Decision-support rules can 
easily access the latest version of granular data or look back for 
a defined period. Visual-trend displays would look back fur-
ther but still typically for a defined period. Normally, these data 
sets for a given patient are relatively small and, hence, can be 
retrieved rapidly and easily.

Another example of granular data are problem lists, orders, 
and medication lists.17 The list of the patient’s problems is often 
stored as a text field and a code field (such as the International 
Classification of Diseases (ICD9 or ICD10), or SNOMED 
Clinical Terms (SNOMED CT)), along with other informa-
tion. Medications similarly are stored as the medication name, 
dose, sig, date, prescriber, and other information. Granularity 
of medication information varies by EHR, but again due to 
certification standards and meaningful use, the trend is toward 
increased granularity to make interoperability, decision sup-
port, and reporting easier. For a given patient, the number of 
current problems and current medications is generally mod-
est—with 20 being considered a large number. Decision sup-
port such as checking for drug interactions can easily operate 
on granular lists, which are easy to retrieve and write rules for.

Progress notes, nursing notes, radiology reports, pathology 
reports, and consult notes are all examples of textual data.17 
Textual data are generally unstructured. It is easy for systems 
to retrieve and display but challenging to use for decision sup-
port or data mining.18 Textual data are also generally not very 
large; the text in a long progress note is ~5,000 characters long. 
The bulk of the information in the EHR for a patient consists of 
textual data. In some systems, even data such as numeric value 
laboratory reports are stored as text data.

The last type of data is images.19 For example, images can be 
photos of the patient or a lesion, electrocardiograms, X-rays, 
ultrasounds, magnetic resonance imaging, and computed 
tomography. Images tend to be large and, although they actu-
ally consist of individual pixels, are generally treated as large 
data objects to be occasionally retrieved and displayed. In many 
EHRs, larger types of images such as X-rays, magnetic reso-
nance imaging, and computed tomography tend to be stored 
in a separate picture archiving and communication system.19 
In that case, often only the radiology report, which is textual 
data, is stored in the EHR. Generally, only the title of the report, 
along with patient, date, and time, is easily available for decision 
support and reporting, and decision support and reporting do 
not use large data objects like images.

It is also important to understand the life cycle of EHR 
data.19 Older data, with a few exceptions, need to be accessed 
only rarely. For example, the vital signs, complete blood count, 
and chemistry panels done during an intensive care unit stay 
are rarely relevant again, with the exception of discharge val-
ues. In the outpatient arena, only the last note, a note on a 

specific problem, or a few older progress notes are read again. 
An exception would be older pathology and unique radiology 
reports, which frequently are useful for long periods of time. 
Trend analysis for a flow chart does often require the retrieval of 
older information, but typically the set of information retrieved 
is small.

Typical EHR data storage systems
The type of data storage system used by an EHR is important 
because individual database systems have strengths and weak-
nesses. Most EHRs today store their data in Structured Query 
Language (SQL) relational databases or databases derived 
from the Multi-User Multi-Programming System (MUMPS), 
although some use a variety of other databases (EHR Association, 
personal communication). The SQL databases are often Oracle, 
SQL Server, or MySQL. Although MUMPS was originally devel-
oped in the 1960s,20 derivatives of MUMPS such as MAGIC and 
Cache are still in wide use by some EHR vendors.

Although SQL- and MUMPS-derivative databases are well 
suited for many existing types of EHR data, they do not neces-
sarily work well for all types of data. An area of relative weak-
ness for these data storage systems is the rapid retrieval of very 
large granular data sets.

Genomic data characteristics and life cycle
One gene has ~3,000 base pairs, the exome has ~50 million base 
pairs,21 and the genome has ~3.2 billion base pairs.22 Apart from 
potentially being very large, an additional attribute of next-gen-
eration sequencing genomic data is that it has uneven depth 
of coverage, and thus, ideally it would be important to store 
information pertaining to the quality of the base-pair calls and 
which regions may have been missed entirely because coverage 
was too low.23 Storing such attributes further complicates the 
storage of raw genomic data.

A way to reduce the complexity of genomic data is to process 
it to a set of variants or even further to a list of known pathologic 
variants and thus only store variants or selected variants. This 
substantially reduces the amount of data that must be stored.

If one stores all variants for an individual’s complete genome, 
there are still an estimated 3–4 million variants per patient to 
store.24 In addition, there are times when accessing the nor-
mal (reference) variant is still important, for example, for 
copy-number variants (e.g., three or more copies of a normal 
gene) and some heterozygous conditions. Therefore, even nor-
mal variants should be stored in some cases. Additional stor-
age would also be required if one stores the variants found in 
abnormal tissue, such as cancers.

If one stores only clearly pathologic variants, the number 
stored will be significantly smaller. However, there is a substan-
tial risk of false positives and false negatives with this approach 
as our understanding of the genome evolves. Although false 
positives can originate from an error in the original testing, a 
likely significant future source of false positives is the incorrect 
original classification of a variant as pathologic.25 False nega-
tives are also a big concern. Many known pathologic variants 

 Volume 15  |  Number 10  |  October 2013  |  Genetics in medicine



781

Genomic data storage and interpretation in EHRs  |  URY Review

remain unpublished and are stored only in the databases of 
individual laboratories.26 Variants of unknown significance 
often outnumber pathologic variants. Moreover, we are only at 
the beginning of the research on genomics, and consequently 
the pathology of many variants remains undiscovered.

Standardization of terminology for the storage of variants is 
an issue.27 Although rs numbers (reference SNP ID numbers) 
are becoming the standard way of identifying single-nucleo-
tide polymorphism variants, many variants have not yet been 
assigned rs numbers. For variants that are haplotypes, there are 
often multiple ways of describing the variant.

The life cycle of genomic data is different than the life cycle of 
most other EHR data. The patient’s genome in general remains 
the same throughout his or her lifetime. This is to be contrasted 
with vital signs, laboratory tests, and much of the other data 
gathered on the patient, which are less relevant as the data 
become older. On the other hand, because current sequencing 
techniques are usually partial and are not fully accurate, it is 
expected that until sequencing matures, a patient’s DNA will be 
sequenced more than once in their lifetime.

The genomic data challenge
The current approach to storing genomic data in an EHR is as 
a textual laboratory report, usually a long, fairly complex docu-
ment, with no granularity.28 Because this conforms to the usual 
EHR textual data type, it is easy for EHRs to do. However, such 
a report does not make the data available for decision support, 
future reinterpretation of the data, use of the data for purposes 
other than the original diagnostic purpose, or for detailed pop-
ulation reporting. The physician must remember to access it to 
learn its contents.

To fully support genomic data, EHRs must store either raw 
genomic data and/or the variants derived from it. Both repre-
sent serious challenges for current EHR data schemas and stor-
age systems. The problem is that the data are very large (like 
images) and very granular (like laboratory data). This combina-
tion is problematic if information needs to be rapidly retrieved 
and analyzed. Although raw genomic data can be heavily com-
pressed,29 and thus will take less space to store, it still must be 
uncompressed to be used for analysis, so its problematic large 
nature remains.

If the decision is made to only store variants, then there could 
still be millions of variants to store for each patient once whole-
genome sequencing is widespread.24 That would still be a very 
large and granular data set for an EHR to store and analyze on 
an individual patient. The rapid retrieval and analysis of such 
a data set can be challenging for the typical database systems 
used by most EHRs,30 which could lead to a substantial perfor-
mance issue.

If the decision is made to only store highly selected variants 
in order to improve performance, then as noted above, given 
the current early, and imprecise, state of our knowledge on 
which variants are truly pathologic, it will lead to missing many 
important variants as our knowledge evolves. Future clini-
cal decision support will be hampered. To further complicate 

matters, there currently is no consensus on which variants to 
select.31 Finally, there is the problem of knowing how mean-
ingful a negative result is. As noted above, current sequencing 
methods do not cover all genes equally reliably, and there can 
be areas that were not covered.

GENOMIC DATA ARE CHALLENGING TO 
INTERPRET IN WIDELY DEPLOYED EHRs

Clinical result interpretation and display in typical EHRs
EHRs display and interpret clinical results in a variety of ways. 
If the result is received as a textual report, such as a radiology 
or pathology report, then it usually contains the interpretation 
and conclusion within it. Displaying the report is sufficient to 
provide an interpretation.

If the result is received as granular data, then the EHR will 
often need to provide an interpreted context.32 For example, for 
granular laboratory data, a chemistry panel, whether a value is 
high or low, is often shown through the use of color or a nearby 
marker. The range of normal values comes from the EHR or the 
laboratory. Similarly, for vital signs, EHRs often will provide an 
interpreted context. For example, the height, weight, and head 
circumference of young children can be plotted on growth 
charts with reference percentile curves.10

Clinical decision support in typical EHRs
Almost all modern EHRs offer some form of clinical decision 
support. US certification10,11 requires some clinical decision sup-
port elements, and some EHRs offer more than what is required. 
For example, when a drug is prescribed, an allergy and drug-
interaction check is performed, and warnings are displayed 
if necessary.19,33 Another example is when, on the basis of the 
patient’s age and sex, a mammogram is suggested for the patient.

Another form of decision support is rule-based decision sup-
port. The rules can be provided by the EHR, or in some cases, by 
the users of the EHR. The rules involve reading some portion of 
EHR data and then using predefined logic to display an alert or 
message to the EHR user.34–36 The EHR data to be accessed must 
be granular and well defined or validated. An example would be 
an alert reminding a user to order a renal or liver function test 
because the patient is on a medication that requires monitoring 
of renal or liver function.33

Practicalities and challenges of genomic data interpretation
When genomic data are presented as a textual laboratory 
report, the report includes the interpretation, which is done 
outside the EHR. However, if an EHR stores the actual genomic 
data, whether in raw base-pair form or as lists of variants found, 
then the EHR will need to aid the clinician in interpreting the 
genomic data. It is unreasonable to expect clinicians (and 
especially nongeneticists) to understand the meaning of each 
genomic variant stored for the patient. For the EHR to interpret 
the patient’s genomic data in an automated manner, the EHR 
faces several challenges.

First, there is a knowledge challenge, which is the lack 
of availability of an accessible, clinically reliable source for 
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knowing whether a variant is pathologic and what its meaning 
is.31,37 Although there are multiple public and paid websites that 
contain variant information and information on pathogenicity, 
they are for use by sophisticated users who can understand dif-
ferences in terminology and often have to reference the original 
literature to make a final decision. The available amalgamated 
data is simply not reliable enough be used as is.31,37,38 Individual 
molecular diagnostic laboratories use a combination of propri-
etary databases and human geneticists to overcome this inter-
pretation problem. However, because their approach is only 
partly automated and usually focused on a narrow set of genes, 
it is not well suited for an EHR. It is likely that most, if not all, 
EHR vendors do not have the resources or expertise to develop 
or maintain their own genomic knowledge bases.

Second, there is a computing challenge. Much of decision 
support is delivered at the point of care, and clinicians are very 
sensitive to small delays in receiving information.39,40 If the 
amount of genomic data for a single patient is large, analysis 
is needed, and if time is limited, then unacceptable delays in 
interpretation could result.

Third is a usability challenge.40 The genomic interpretation 
needs to be delivered in context and as part of the normal clini-
cian workflow. If alerts are too frequent, users may start ignor-
ing them (alert fatigue), so it is important to decide what data 
and alerts are truly worthwhile.41

Finally, there is the issue of whether existing EHR rules-
based decision support systems can be adapted for widespread 
genomic use. There are examples in which for a few, carefully 
selected genomic conditions, with a limited number of patho-
logic variants, EHR rules-based decision support systems can be 
made to work.42 However, there are many genomic conditions 
with dozens or hundreds of pathologic variants and others with 
gene relationship complexity. Given that reality, it is unlikely 
that current EHR rules-based decision support systems can 
scale to an environment containing tens or hundreds of thou-
sands of meaningful variants and rapidly evolving knowledge.

OTHER GENOMICS CHALLENGES FOR EHRs
Family history is an important part of the genomic informa-
tion for a patient.43 It can help to assess a patient’s true genomic 
risks. Family history data can be granular and relatively easy to 
store in the data schema of a typical EHR. Many EHRs support 
the collection of family history.44 The challenge for EHRs is to 
collect family history in a way that is accurate and also supports 
automated clinical decision support.45–49

Patient privacy is a major concern for genomic data.50,51 
Security is very important but can be the same as for other 
patient data. However, the sharing and use of patient genomic 
data may need a different set of rules for genomic data than 
other patient data.51–54 EHRs may need to provide a different 
mechanism for handling the sharing and use of genomic data.

Genomic data pose medical ethics dilemmas, which can be a 
challenge for automated interpretation in EHRs. Although this 
topic is reviewed elsewhere in this issue, it is worth noting that 
when a patient is asymptomatic, deciding which conditions and 

level of evidence that will trigger an alert or risk profile is an 
issue that must be considered carefully.53,55,56

The lack of physician education on genomics is another chal-
lenge for EHRs.6 When presenting genomic data and its inter-
pretation, the overall knowledge of the receiving physician 
should be considered.

POSSIBLE SOLUTIONS
A number of groups have proposed possible solutions for the 
major EHR challenges of storing, interpreting, and providing 
decision support for genomic data (Table 1).

A 2012 NHLBI workshop on integrating genetic results into 
electronic medical records resulted in the publication of a list 
of technical desiderata for EHR genomic data.23 For the stor-
age of patient genetic information, they included the following 
desiderata: (i) maintain separation of primary molecular obser-
vations from the clinical interpretations of those data; (ii) sup-
port lossless data compression from primary molecular obser-
vations to clinically manageable subsets; (iii) maintain linkage 
of molecular observations to the laboratory methods used to 
generate them; (iv) support compact representation of clinically 
actionable subsets for optimal performance; and (v) simultane-
ously support human-viewable formats and machine-readable 
formats to facilitate implementation of decision support rules.

Berg et al.24,37 have proposed a methodology to deal with the 
large number of variants that can be found in a single patient 

Table 1  Challenges for fully integrating genomic data 
into the EHR

Challenge Possible solutions

Size and complexity of 
genomic data

2012 NHLBI technical desiderata  
(ref. 23)

Berg et al. (refs. 24,37)

Starren et al. (ref. 64)

Genomic data interpretation Welch and Kawamoto review (ref. 58)

Vanderbilt PREDICT (ref. 42)

ACMG 2013 recommendations (ref. 56)

Berg et al. (refs. 24,37)

Overby (ref. 60)

Processing and storage 
demands

Proprietary efforts

Ethics and privacy Darcy et al. (ref. 53)

eMERGE (ref. 61)

Using family history Doerr and Teng (ref. 43)

Research use Kohane (ref. 65)

Roden et al. (ref. 66)

Pathak et al. (ref. 67)

Ritchie et al. (ref. 68)

eMERGE (ref. 61)

ACMG, American College of Medical Genetics and Genomics; EHR, electronic 
health record; eMERGE, Electronic Medical Records and Genomics Network; 
NHLBI, National Heart, Lung, and Blood Institute; PREDICT, Pharmacogenomic 
Resource for Enhanced Decisions in Care and Treatment.
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during whole-genome or -exome sequencing. They propose 
sorting them into bins based on clinical utility/actionability, 
clinical validity, and the potential to cause harm. Although 
their work is intended to aid molecular diagnosis laboratories 
struggling with the “incidentalome,” it is applicable to the inter-
pretation issue EHRs will face handling genomic data.

The American College of Medical Genetics and Genomics 
recently published its recommendations for reporting inci-
dental sequencing findings, specifically listing 24 disease 
groups.56 The American Society of Clinical Oncology has also 
published its recommendations on genetic testing for cancer 
susceptibility.57

Welch and Kawamoto,58 in a systematic review of the lit-
erature, found 38 primary research articles focused on clini-
cal decision support for genetically guided personalized 
medicine. The lack of automatic provision of clinical decision 
support in routine clinical workflow was strongly associated 
with a negative outcome. Of the 38 primary research articles, 
9 were randomized trials, and 7 of the 9 randomized trials 
reported positive results. The key factor for a positive trial 
appeared to be incorporation into routine clinical workflow. 
Welch and Kawamoto note in their conclusion that research 
on these kinds of clinical decision support systems is still in 
its infancy.

The incorporation of pharmacogenomics into EHRs has 
been proposed by several groups.59,60 The Vanderbilt PREDICT 
group has published their operational design for a project that 
incorporated CYP2C19 variants into EHR decision support for 
prescribing clopidogrel.42

Darcy et al.53 have published a guide to practical consider-
ations for access controls and decision support for genetic 
information. Best practices for merging genomic data reposi-
tories with EHRs are being developed by the eMERGE group,61 
whose work is described in an article in this issue.62 Martin-
Sanchez et al.63 have called for a synthesis of medical informat-
ics and bioinformatics to create an integration of genomic data 
and the EHR.

As an interim solution, Starren et al.64 have proposed creat-
ing separate, ancillary genomic systems. Finally, family his-
tory remains important in the genomic era. Doerr and Teng43 
recently reviewed the validity and usefulness of family history 
tools.

CONCLUSION
Given the storage, interpretation, and processing challenges, 
along with the press of other priorities such as certification and 
meaningful use, it is not surprising that up to now EHRs have 
made very little progress in their use of genomic data. Because 
of the data’s large but granular nature and interpretation com-
plexity, genomic data and their interpretation are substantially 
different than other kinds of EHR data and decision support 
and thus do not easily lend themselves to extensions of existing 
EHR technologies.

EHRs do support the only kind of genomic data that fits 
into their current schemas, which is a textual laboratory 

report from a molecular diagnosis laboratory. Those reports 
generally address a very specific diagnostic issue and con-
tain a full interpretation. However, the reports are not well 
suited for clinical decision support, generally contain lim-
ited genomic information, and can be rendered obsolete by 
advances in medical knowledge.

Although existing EHR rules-based decision support 
systems can be used for a few, selected genomic decision 
support conditions, they are unlikely to scale to support a 
rapidly evolving environment containing tens of thousands 
of meaningful variants. Many EHRs support the gather-
ing of family history, and family history is an important 
part of understanding the meaning of genomic findings. 
However, there is a need to technically improve the manner 
in which family history is gathered, to make it more useful 
for clinicians.

To truly integrate genomic decision support into the EHR 
involves solving several difficult challenges, and substantial 
research and development is still needed, along with the col-
laboration of the medical genetics community. In addition to 
the technical challenges of fully incorporating genomic data 
into EHRs, important patient privacy and bioethical issues 
need to be addressed. The research and development effort is 
very worthwhile because integrating genomic decision sup-
port into the EHR is a key to beginning a new era of precision 
medicine.

Incorporating genomic information into the EHR will have 
the additional benefit of enabling medical research, allowing 
much more to be learned about the relationship between geno-
type and phenotype.18,61,65–68
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