Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BRCA1 gene therapy reduces systemic inflammatory response and multiple organ failure and improves survival in experimental sepsis

Abstract

Sepsis-related complications and mortality remain a major clinical problem. Increased cell death and unresolved cellular repair have been implicated as key upstream mediators of sepsis-induced organ dysfunction and death. We hypothesised that gene therapy with BRCA1, a critical regulator of DNA damage repair and cell survival, would attenuate the sequelae of sepsis and peritonitis in mice subjected to caecal ligation and perforation (CLP) and thioglycollate stimulation. C57Bl/6J mice underwent sham or CLP surgery 3 days following treatment with either human BRCA1 adenovirus (AdBRCA1) or the adeno-CMV-null vector (Adnull). The 24-h post-CLP mortality was 2.8% vs 17.9% (P<0.001) and the median post-CLP survival was 50.5 vs 33 h (P<0.05) for AdBRCA1- vs Adnull-treated mice, respectively. AdBRCA1 therapy blunted CLP-associated cardiac, pulmonary, hepatic and renal dysfunction and also reduced CLP-elicited double strand breaks and apoptosis in the liver. BRCA1 gene therapy was associated with lower CLP-evoked cardiac and hepatic superoxide generation that in the liver was in part due to improved reactive oxygen species removal. CLP also elevated mesenteric arteriolar and serum intercellular adhesion molecule-1, both of which were partially abrogated with AdBRCA1 administration. Thioglycollate-challenged AdBRCA1-treated mice displayed reduced peritoneal neutrophil recruitment and dampened cytokine elaboration relative to their Adnull-treated counterparts. Taken together, we report a novel role of BRCA1 gene therapy in limiting systemic inflammation, multiple-organ failure and mortality in experimental sepsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Canadian Institute for Health Information. Canadian Hospitals Aim to Reduce Mortality Rates, but Severe Infections Remain a Challenge 2009, http://www.cihi.ca/CIHI-ext-portal/internet/en/document/health+system+performance/quality+of+care+and+outcomes/hsmr/release_10dec09.

  2. Levy MM, Dellinger RP, Townsend SR, Linde-Zwirble WT, Marshall JC, Bion J et al. The surviving sepsis campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Crit Care Med 2010; 38: 367–374.

    Article  Google Scholar 

  3. Houston G, Cuthbertson BH . Activated protein C for the treatment of severe sepsis. Clin Microbiol Infect 2009; 15: 319–324.

    Article  CAS  Google Scholar 

  4. Rice TW, Bernard GR . Therapeutic intervention and targets for sepsis. Annu Rev Med 2005; 56: 225–248.

    Article  CAS  Google Scholar 

  5. Marshall JC . Sepsis: rethinking the approach to clinical research. J Leukoc Biol 2008; 83: 471–482.

    Article  CAS  Google Scholar 

  6. Alves-Filho JC, de Freitas A, Spiller F, Souto FO, Cunha FQ . The role of neutrophils in severe sepsis. Shock 2008; 30 (Suppl 1): 3–9.

    Article  CAS  Google Scholar 

  7. Galley HF . Bench-to-bedside review: targeting antioxidants to mitochondria in sepsis. Crit Care 2010; 14: 230.

    PubMed  PubMed Central  Google Scholar 

  8. Hattori Y, Takano K, Teramae H, Yamamoto S, Yokoo H, Matsuda N . Insights into sepsis therapeutic design based on the apoptotic death pathway. J Pharmacol Sci 2010; 114: 354–365.

    Article  CAS  Google Scholar 

  9. Rittirsch D, Flierl MA, Ward PA . Harmful molecular mechanisms in sepsis. Nat Rev Immunol 2008; 8: 776–787.

    Article  CAS  Google Scholar 

  10. Ayala A, Perl M, Venet F, Lomas-Neira J, Swan R, Chung CS . Apoptosis in sepsis: mechanisms, clinical impact and potential therapeutic targets. Curr Pharm Des 2008; 14: 1853–1859.

    Article  CAS  Google Scholar 

  11. Iwata A, de Claro RA, Morgan-Stevenson VL, Tupper JC, Schwartz BR, Liu L et al. Extracellular administration of BCL2 protein reduces apoptosis and improves survival in a murine model of sepsis. PLoS One 2011; 6: e14729.

    Article  CAS  Google Scholar 

  12. Inoue S, Bo L, Bian J, Unsinger J, Chang K, Hotchkiss RS . Dose dependent effect of anti-CTLA-4 on survival in sepsis. Shock 2011; 36: 38–44.

    Article  CAS  Google Scholar 

  13. Barkhausen T, Tschernig T, Rosenstiel P, van Griensven M, Vonberg RP, Dorsch M et al. Selective blockade of interleukin-6 trans-signaling improves survival in a murine polymicrobial sepsis model. Crit Care Med 2011; 39: 1407–1413.

    Article  CAS  Google Scholar 

  14. Wang X, Zingarelli B, O’Connor M, Zhang P, Adeyemo A, Kranias EG et al. Overexpression of Hsp20 prevents endotoxin-induced myocardial dysfunction and apoptosis via inhibition of NF-kappaB activation. J Mol Cell Cardiol 2009; 47: 382–390.

    Article  CAS  Google Scholar 

  15. Suzuki K, Murakami T, Kuwahara-Arai K, Tamura H, Hiramatsu K, Nagaoka I . Human anti-microbial cathelicidin peptide LL-37 suppresses the LPS-induced apoptosis of endothelial cells. Int Immunol 2011; 23: 185–193.

    Article  CAS  Google Scholar 

  16. Feng H, Guo L, Song Z, Gao H, Wang D, Fu W et al. Caveolin-1 protects against sepsis by modulating inflammatory response, alleviating bacterial burden, and suppressing thymocyte apoptosis. J Biol Chem 2010; 285: 25154–25160.

    Article  CAS  Google Scholar 

  17. Matsuda N, Teramae H, Yamamoto S, Takano K, Takano Y, Hattori Y . Increased death receptor pathway of apoptotic signaling in septic mouse aorta: effect of systemic delivery of FADD siRNA. Am J Physiol Heart Circ Physiol 2010; 298: H92–H101.

    Article  CAS  Google Scholar 

  18. Hu H, Li X, Li Y, Wang L, Mehta S, Feng Q et al. Calpain-1 induces apoptosis in pulmonary microvascular endothelial cells under septic conditions. Microvasc Res 2009; 78: 33–39.

    Article  CAS  Google Scholar 

  19. Perl M, Chung CS, Perl U, Lomas-Neira J, de Paepe M, Cioffi WG et al. Fas-induced pulmonary apoptosis and inflammation during indirect acute lung injury. Am J Respir Crit Care Med 2007; 176: 591–601.

    Article  CAS  Google Scholar 

  20. Yeh CH, Cho W, So EC, Chu CC, Lin MC, Wang JJ et al. Propofol inhibits lipopolysaccharide-induced lung epithelial cell injury by reducing hypoxia-inducible factor-1{alpha} expression. Br J Anaesth 2011; 106: 590–599.

    Article  CAS  Google Scholar 

  21. Inoue S, Unsinger J, Davis CG, Muenzer JT, Ferguson TA, Chang K et al. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis. J Immunol 2010; 184: 1401–1409.

    Article  CAS  Google Scholar 

  22. Hsing CH, Chiu CJ, Chang LY, Hsu CC, Chang MS . IL-19 is involved in the pathogenesis of endotoxic shock. Shock 2008; 29: 7–15.

    CAS  PubMed  Google Scholar 

  23. Chang KC, Unsinger J, Davis CG, Schwulst SJ, Muenzer JT, Strasser A et al. Multiple triggers of cell death in sepsis: death receptor and mitochondrial-mediated apoptosis. FASEB J 2007; 21: 708–719.

    Article  CAS  Google Scholar 

  24. Greenberg RA . Recognition of DNA double strand breaks by the BRCA1 tumor suppressor network. Chromosoma 2008; 117: 305–317.

    Article  CAS  Google Scholar 

  25. Scully R, Livingston DM . In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 2000; 408: 429–432.

    Article  CAS  Google Scholar 

  26. Buckley NE, Hosey AM, Gorski JJ, Purcell JW, Mulligan JM, Harkin DP et al. BRCA1 regulates IFN-gamma signaling through a mechanism involving the type I IFNs. Mol Cancer Res 2007; 5: 261–270.

    Article  CAS  Google Scholar 

  27. Bae I, Fan S, Meng Q, Rih JK, Kim HJ, Kang HJ et al. BRCA1 induces antioxidant gene expression and resistance to oxidative stress. Cancer Res 2004; 64: 7893–7909.

    Article  CAS  Google Scholar 

  28. Liu SF, Malik AB . NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 2006; 290: L622–L645.

    Article  CAS  Google Scholar 

  29. Schaub FJ, Han DK, Liles WC, Adams LD, Coats SA, Ramachandran RK et al. Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells. Nat Med 2000; 6: 790–796.

    Article  CAS  Google Scholar 

  30. Park DR, Thomsen AR, Frevert CW, Pham U, Skerrett SJ, Kiener PA et al. Fas (CD95) induces proinflammatory cytokine responses by human monocytes and monocyte-derived macrophages. J Immunol 2003; 170: 6209–6216.

    Article  CAS  Google Scholar 

  31. Ahn JH, Park SM, Cho HS, Lee MS, Yoon JB, Vilcek J et al. Non-apoptotic signaling pathways activated by soluble Fas ligand in serum-starved human fibroblasts. Mitogen-activated protein kinases and NF-kappaB-dependent gene expression. J Biol Chem 2001; 276: 47100–47106.

    Article  CAS  Google Scholar 

  32. Roy S, Nicholson DW . Cross-talk in cell death signaling. J Exp Med 2000; 192: F21–F25.

    Article  CAS  Google Scholar 

  33. Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 1999; 27: 1230–1251.

    Article  CAS  Google Scholar 

  34. Boulton SJ . Cellular functions of the BRCA tumour-suppressor proteins. Biochem Soc Trans 2006; 34: 633–645.

    Article  CAS  Google Scholar 

  35. Mullan PB, Quinn JE, Harkin DP . The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 2006; 25: 5854–5863.

    Article  CAS  Google Scholar 

  36. Singh KK, Shukla PC, Quan A, Al-Omran M, Jurasz P, Lovren F et al. BRCA1 is novel regulator of endothelial function and limits atherosclerosis. Circulation 2009; 120: S928.

    Article  Google Scholar 

  37. Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S et al. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 2006; 8: 691–728.

    Article  CAS  Google Scholar 

  38. Boueiz A, Hassoun PM . Regulation of endothelial barrier function by reactive oxygen and nitrogen species. Microvasc Res 2009; 77: 26–34.

    Article  CAS  Google Scholar 

  39. Abraham E, Singer M . Mechanisms of sepsis-induced organ dysfunction. Crit Care Med 2007; 35: 2408–2416.

    Article  Google Scholar 

  40. Levy RJ . Mitochondrial dysfunction, bioenergetic impairment, and metabolic down-regulation in sepsis. Shock 2007; 28: 24–28.

    Article  CAS  Google Scholar 

  41. Galley HF, Howdle PD, Walker BE, Webster NR . The effects of intravenous antioxidants in patients with septic shock. Free Radic Biol Med 1997; 23: 768–774.

    Article  CAS  Google Scholar 

  42. Goode HF, Cowley HC, Walker BE, Howdle PD, Webster NR . Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit Care Med 1995; 23: 646–651.

    Article  CAS  Google Scholar 

  43. Huang Z, Zuo L, Zhang Z, Liu J, Chen J, Dong L et al. 3,3′-Diindolylmethane decreases VCAM-1 expression and alleviates experimental colitis via a BRCA1-dependent antioxidant pathway. Free Radic Biol Med 2011; 50: 228–236.

    Article  CAS  Google Scholar 

  44. Goven D, Boutten A, Lecon-Malas V, Marchal-Somme J, Amara N, Crestani B et al. Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema. Thorax 2008; 63: 916–924.

    Article  CAS  Google Scholar 

  45. Kim HJ, Vaziri ND . Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Renal Physiol 2010; 298: F662–F671.

    Article  CAS  Google Scholar 

  46. Mercado N, Thimmulappa R, Thomas CM, Fenwick PS, Chana KK, Donnelly LE et al. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun 2011; 406: 292–298.

    Article  CAS  Google Scholar 

  47. Vecchio D, Arezzini B, Pecorelli A, Valacchi G, Martorana PA, Gardi C . Reactivity of mouse alveolar macrophages to cigarette smoke is strain dependent. Am J Physiol Lung Cell Mol Physiol 2010; 298: L704–L713.

    Article  CAS  Google Scholar 

  48. Hofer S, Brenner T, Bopp C, Steppan J, Lichtenstern C, Weitz J et al. Cell death serum biomarkers are early predictors for survival in severe septic patients with hepatic dysfunction. Crit Care 2009; 13: R93.

    Article  Google Scholar 

  49. Shukla PC, Singh KK, Quan A, Al-Omran M, Teoh H, Lovren F et al. BRCA1 is an essential regulator of heart function and survival following myocardial infarction. Nat Commun 2011; 2: 593.

    Article  Google Scholar 

Download references

Acknowledgements

Supported in part by a grant-in-aid award (Grant # 93704) from the Canadian Institutes for Health Research to S Verma. H Teoh was the St Michael's Hospital-sanofi-aventis Cardiometabolic Risk Initiative Research Fellow. KK Singh was the recipient of the Heart & Stroke Foundation of Canada/Pfizer Research Fellowship. S Verma is the Canada Research Chair in Atherosclerosis.

Author information

Authors and Affiliations

Corresponding authors

Correspondence to H Teoh or S Verma.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teoh, H., Quan, A., Creighton, A. et al. BRCA1 gene therapy reduces systemic inflammatory response and multiple organ failure and improves survival in experimental sepsis. Gene Ther 20, 51–61 (2013). https://doi.org/10.1038/gt.2011.214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/gt.2011.214

Keywords

This article is cited by

Search

Quick links