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Intratumoral gene therapy versus intravenous gene therapy for
distant metastasis control with 2-Diethylaminoethyl-Dextran
Methyl Methacrylate Copolymer Non-Viral Vector–p53
A Baliaka1, P Zarogoulidis2,3, K Domvri2, W Hohenforst-Schmidt4, A Sakkas1, H Huang5, P Le Pivert6, G Koliakos7, E Koliakou7,
K Kouzi-koliakos8, K Tsakiridis9, A Chioti10, E Siotou10, A Cheva1, K Zarogoulidis2 and L Sakkas1

Lung cancer still remains to be challenged by novel treatment modalities. Novel locally targeted routes of administration are a
methodology to enhance treatment and reduce side effects. Intratumoral gene therapy is a method for local treatment and could
be used either in early-stage lung cancer before surgery or at advanced stages as palliative care. Novel non-viral vectors are also in
demand for efficient gene transfection to target local cancer tissue and at the same time protect the normal tissue. In the current
study, C57BL/6 mice were divided into three groups: (a) control, (b) intravenous and (c) intatumoral gene therapy. The novel
2-Diethylaminoethyl-Dextran Methyl Methacrylate Copolymer Non-Viral Vector (Ryujyu Science Corporation) was conjugated with
plasmid pSicop53 from the company Addgene for the first time. The aim of the study was to evaluate the safety and efficacy of
targeted gene therapy in a Lewis lung cancer model. Indeed, although the pharmacokinetics of the different administration
modalities differs, the intratumoral administration presented increased survival and decreased distant metastasis. Intratumoral
gene therapy could be considered as an efficient local therapy for lung cancer.
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INTRODUCTION
Lung cancer treatment in an evolving field as novel pathways and
gene mutations are being discovered.1 Until recently, non-specific
cytotoxic drugs were administered as first-line treatment;
however, with the evolving science of pharcogenomics, agents
targeting the mutations of lung cancer were introduced in the
market as first-line treatment.2–4 Several new pathways are being
investigated as possible targets for inhibition, and lung cancer
treatment is directed to being personalized.5–7 Administering
non-specific cytotoxic agents by intravenous route or oral
targeting agents has, for many patients, adverse effects that can
potentially postpone their treatment.8–10 Therefore the concept of
delivering the necessary dose of treatment directly to the target
tissue has been investigated with (a) gene therapy, (b)
immunotherapy and (c) chemotherapy or combinations of the
above methods.11–17 The following methods for intratumoral
treatment have been used: (a) brachytherapy, (b) photodynamic
therapy, (c) thermal and non-thermal ablative therapies, (d)
chemotherapy, and (e) gene therapy.16,18–20 Gene therapy has
been used for lung cancer to sensitize cells to radiotherapy and
chemotherapy.21–23 Gene therapy is used to insert genetic
material into a cell. There are currently two vehicles that are

used for efficient gene transportation: the viral and the non-viral
vectors. There are advantages and disadvantages for each vehicle.
The viral vectors tend to induce neutralizing antibodies known as
NABs within 3–7 days, and several non-viral vectors have a low
DNA uptake capability and have been observed to be toxic for
certain normal cells, such as the airway epithelium.24–28 The
intratumoral treatment efficiency depends on the following
factors: (a) interstitial fluid pressure (IFP) within the tumor, (b) local
hypoxia, (c) structural abnormalities within the tumor, (d) hetero-
genous distribution due to abnormal vessel formation within the
tumor, and (e) extracellular matrix (ECM), which consists of
collagen, fibroblasts, tumor cells and elastin.29 Before designing
a drug for intratumoral administration, we should consider first
the method of diffusion that we want to use. The passive
transportation, which is based on the physicochemical properties
of the injected compound, and active transportation, which is
based on the concept of antigen–antibody connection.30 In
addition, within the process of drug administration, heating and
cooling techniques have been additionally used to enhance the
drug diffusion.31,32 The time release effect has a major role in this
kind of treatment as it prolongs the local deposition to the target
tissue and increases apoptosis. Additionally, and at the same time,
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it will postpone any unnecessary toxic drug concentration to
diffuse within normal tissue. Carriers have been investigated in
order to create a local sustain release effect.33,34 Nanocarriers have
displayed the enhanced permeability and retention (EPR)
effect where a drug has increased local deposition and
diffusion.29,35 Surface modification on nanoparticles (NPs) with
didodecyldimethylammoniumbromide is an example where the
NPs presented greater interaction with the membrane lipids of
cancer cells and improved local retention of the administered
compound.36 The EPR effect has been observed to be controlled
by heat-shock protein 32 and carbon monoxide.37 Moreover, the
addition of polyethylene glycol (PEG) has been observed to
enhance the EPR effect and sustain release as it cannot be
recognized by the macrophages.38 Novel techniques of
intratumoral inflammation imaging have been investigated
with19F-magnetic resonance.39 Currently, there has been
extensive research on intratumoral gene therapy in pancreatic
cancer, and most of our knowledge regarding this treatment is
due to this type of cancer treatment experimentation.40,41
11Intratumoral chemotherapy has been also used for prostate
cancer, glioblastoma, melanoma, breast cancer, neuroblastoma
and hepatocellular carcinoma42–50 (Table 1). Several vectors have
been used in these different studies, with different intratumoral
therapeutic strategies (Table 2). In the current study, we will
present our data from the administration of the 2-Diethylami-
noethyl-Dextran Methyl Methacrylate Copolymer Non-Viral Vector
(DDMC, Ryujyu science corporation, Seto-City, Japan) conjugated
with plasmid p53 in C57BL/6 mice in three different groups: (a)
control, (b) intravenous, and (c) intratumoral in an effort to identify
which methodology could efficiently present local tumor control
and distant metastasis control.

RESULTS
Tumor growth rate was controlled in the intravenous and
intratumoral group, in comparison to the control group.
(Tables 3–5) Our results indicate that distant metastasis in the
lung was controlled in a higher degree in the intratumoral group

(group 2); in two subjects there were no lung metastasis after
21 days and 6 administrations. In Figure 1, macroscopical findings
indicate that only in the control group lung metastasis were
visible. In Figure 2, the gene complex is clearly demonstrated
within lung micrometastasis for both the intravenous and
intratumoral group, therefore it is clear that with both modalities
the therapy is efficiently delivered in the lung. However; a higher
degree of apoptosis is observed with the intratumoral group as
there are clear regions surrounding the gene complex. Also, it has
to be stated that in the intravenous group two mice died
after administration probably due to the gene complex. The
mean survival can be displayed as follows in terms of efficiency:
intratumoral (17.4 days)4intravenous (12.6 days)4control
(12.6 days). Additionally, Ki-67 and TTF-1 were positively expressed
(Figure 3). There was no difference in the survival between the
intravenous and control group; however, distant lung metastasis
was controlled up to a degree.

DISCUSSION
Previously, it has been observed that local administration of
intratumoral chemotherapy is safe and efficient. It was observed
that adverse effects were minimal and even complete lung
atelectasis was re-expanded.16 However; the ideal methodology
still has to be investigated as several parameters have to be
improved. An algorithm has to be built identifying the proper
molecules that will efficiently diffuse within the tumor. There are
several factors influencing the distribution as previously stated (for
example, ECM, IFP, vessel structure) that differ among different
tumor types (for example, cavitation-squamus versus no
cavitation-non-squamus).51 The proper volume/concentration
that induces cell apoptosis has to be identified for each drug
before study initiation. One of the methods that could be used
towards this direction is the ITASSER (http://zhanglab.ccmb.
med.umich.edu, Ann Arbor, MI, USA), which has already been
used in previous studies.52,53 The same principals of local
intratumoral therapy design apply for gene therapy. We would
like to have a vector–gene complex that will efficiently distribute

Table 1. Intratumoral gene therapy vectors and cancer types

Author Vector Cancer type Ref.

Hecht et al. TNFerade (AdGVEGR, TNF.11D) Pancreas 40

Hanna et al. BC-819 Pancreas 41

Li et al. oHSV-1-NIS Prostate 45

Leifler et al. Adenovirus carrying TIMP-1 or MMP-9 Breast 42

Peng et al. miRNA or shRNA-against target gene (Beclin 1) Hepatocellular 43

Weibel et al. GLV-1h68 Different tumor models 39

Puntel et al. HC-Ad-TK/TetOn-Flt3L Glioblastoma 47

Hallet et al. Anti-MMP-9 DNAzyme Breast 46

Chen et al. PDMSCs-PEDF Melanoma 44

Xie et al. Ad-IFN-g Pancreas 11

Yang et al. Hu 14.18-IL-2 NXS2 neuroblastoma cell line 31

Kasai et al. MGH2.1-CPA-CYP2B1 and CPT11-shiCE Glioma cells 50

Ramachandran et al. HP-NAP, Ad5PTDf35-[D24-sNAP] Neuroendocrine 49

Huang et al. shVEGF-DOX-dtACPP Glioma 48

Abbreviations: Ad-IFN-g, adenovirus-interferon-g; BC-819, a plasmid comprised of the H19 gene regulatory sequences; DOX, doxorubicin; dtACPP, nanoparticle;
GLV-1h68, Vaccinia virus strain; HC-Ad-TK/TetOn-Flt3L, adenoviral vectors encoding cytotoxic herpes simplex type 1 thymidine kinase and the
immunostimulatory cytokine fms-like tyrosine kinase ligand 3; HP-NAP-Ad5PTDf35-[D24-sNAP], Helicobacter pylori neutrophil-activating protein, which
mediate antitumor effects by recruiting neutrophils and inducing Th1-type differentiation in the tumor microenvironment; Hu 14.18-IL-2, an immunocytokine
consisting of human interleukin-2 linked to hu14.18 mAb, which recognizes the disialoganglioside; MGH2.1, a herpes simplex oncolytic virus type 1 expressing
two prodrug-activating transgenes: (a) cyclophosphamide activating P4502B1 and (b) CPT11-activating secreted human intestinal carboxylesterase; MM9,
matrix metalloproteinase-9; oHSV-1-NIS, oncolytic herpes simplex virus type 1 with gene coding for human sodium iodide symporter (NIS); PDMSCs-PEDF,
placenta-derived mesenchymal stem cells loaded with ecombinant adenoviruses expressing pigment epithelium-derived factor; shVEGF, interfering RNA
targeting vascular endothelial growth factor; TIMP-1, tissue inhibitor of metalloproteinase-9; TNFerade (AdGVEGR, TNF.11D), a replication-deficient adenoviral
vector that expresses tumor necrosis factor-a.
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Table 2. Intratumoral studies with different approaches

Author Methodology Subjects Cancer
cells–tissue

Response Nanoparticles Carriers Ref.

Horev-Drori et al. 224Ra-loaded wires
plus gemcitabine/5-FU

In vitro/in vivo Pancreas O — — 77

Xie et al. 64Cu-nanoshells Nude rats Head–neck O O Nanoshells 11

Hecht et al. TNFerade
(AdGVEGR.TNF.11D)

Patients Pancreas O — — 40

Govindarajan et al. TMAF In vitro/in vivo Breast–ovarian O — — 52

Lin et al. Review Review Review Review Lipid nanoparticles Review 33

Zheng et al. ICG-PL-PEG-mAb In vitro/in vivo U87-MG human
glioblastoma
cancer cells

O ICG-PL-PEG-mAb PL-PEG 18

Luo et al. Core-loaded fibers
with
hydroxycamptothecin

In vitro/in vivo H22 hepatoma
cells

O — Fibers 58

Yang et al. Hu14.18-IL-2 In vitro/in vivo NXS2
neuroblastoma
cell line

O — — 31

Peiris et al. Three nanoparticle
Magnetic chain with
doxorubicin

In vitro/in vivo MAT B III tumor-
bearing animals

O Nanochain magnetic
particles

— 56

Hanna et al. BC-819 In vitro/in vivo Pancreas O — — 41

Liu et al. mPEG-PCL-Docetaxel In vitro/in vivo H22 hepatoma
cells

O mPEG-PCL Poly
(caprolactone)

57

Luo et al. PELA Fibers plus
hydroxycamptothecin

In vitro/in vivo H22 hepatoma
cells

O PELA Poly(D,L-lactide)
58

Geletneky et al. Parvovirus H-1 in vivo Glioblastoma
multiforme

O — — 17

Zhao et al. NLP-PEG, CLP-PEG
plus DOX

In vitro/in vivo H22 hepatoma
cells

O DOX-NLPs, DOX-CLPs,
DOX-NLP-PEG, DOX-CLP-PEG

Cationic
liposomes,
nano lipid
particles

38

Ahmed et al. Nanoparticles and
Thermal ablation

Review Review Review Review Review 78

Betting et al. CpG plus rituximab/
cyclophosphamide

In vitro/in vivo B-cell
lymphoma

O — — 81

Son et al. Dendritic cells plus
Cyclophosphamide/
irradiation

In vitro/in vivo CT-26 colon
carcinoma cell
line

O — — 79

Raut et al. Sorafenib Patients Refractory
sarcomas

O — — 80

Li et al. oHSV-1-NIS In vitro/in vivo Prostate O — — 41

Leifler et al. Adenoviruse carrying
TIMP-1 or MMP-9

In vitro/in vivo Breast O — — 42

Peng et al. miRNA or shRNA-
against target gene
(Beclin 1)

In vitro/in vivo Hepatocellular O — — 43

Weibel et al. GLV-1h68 In vitro/in vivo Different tumor
models

O — — 39

Puntel et al. HC-Ad-TK/TetOn-Flt3L In vitro/in vivo Glioblastoma O — — 43

Hallet et al. Anti-MMP-9 DNAzyme In vitro/in vivo Breast O — — 46

Chen et al. PDMSCs-PEDF In vitro/in vivo Melanoma O — — 44

Xie et al. Ad-IFN-g In vitro/in vivo Pancreas O — — 34

Kasai et al. MGH2.1-CPA-CYP2B1
and CPT11-shiCE

In vitro/in vivo Glioma O — — 50

Ramachandran et al. HP-NAP, Ad5PTDf35-
[D24-sNAP]

In vitro/in vivo Neuroendocrine O — — 49

Huang et al. shVEGF-DOX-dtACPP In vitro/in vivo Glioma O dtACPP — 48

Abbreviations: Ad-IFN-g, adenovirus-interferon-g; AdGVEGR.TNF.11D, a replication-deficient adenoviral vector that expresses tumor necrosis factor-a (TNF-a);
B16, melanoma cell line; B16F10, murine metastatic melanoma in the tails of C57BL/6 mice; BC-819, a plasmid comprised of the H19 gene regulatory
sequences; CLP, cationic liposomes; CT-26, colon carcinoma cell line; DOX, doxorubicin; dtACPP, nanoparticle; FU, fluorouracil; GLV-1h68, Vaccinia virus strain;
H22, hepatoma cells; HC-Ad-TK/TetOn-Flt3L, adenoviral vectors encoding cytotoxic herpes simplex type 1 thymidine kinase and the immunostimulatory
cytokine fms-like tyrosine kinase ligand 3; HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A; HP-NAP-Ad5PTDf35-[D24-sNAP], Helicobacter pylori neutrophil-
activating protein, which mediate antitumor effects by recruiting neutrophils and inducing Th1-type differentiation in the tumor microenvironment; HT29,
human colon carcinoma cell lines; Hu14.18-IL-2, an immunocytokine consisting of human IL-2 linked to hu14.18 mAb, which recognizes the GD2
disialoganglioside; ICG-PL-PEG-mAb, indocyanine green-polylactic-polyethylene glycol-integrin a(v)b(3) monoclonal antibody; MAT B, animals inoculated with
Mat B-III-uPAR cells; MGH2.1, a herpes simplex oncolytic virus type 1 expressing two prodrug-activating transgenes: (a) cyclophosphamide-activating P4502B1
and (b) CPT11-activating secreted human intestinal carboxylesterase; MM9, matrix metalloproteinase-9; mPEG-PCL, poly(caprolactone); NLP, neutral liposomes;
NXS2, neuroblastoma cell line; ODN, oligodeoxynucleotide; oHSV-1-NIS, oncolytic herpes simplex virus type 1 with gene coding for human sodium iodide
symporter (NIS); PDMSCs-PEDF, placenta-derived mesenchymal stem cells loaded with ecombinant adenoviruses expressing pigment epithelium-derived
factor; PEG, polyethylene glycol; PELA, poly(D,L-lactide); PL, polylactic; shVEGF, interfering RNA targeting vascular endothelial growth factor; SLC-Fc, secondary
lymphoid tissue chemokine-Fc; TNFerade, a replication-deficient adenoviral vector that expresses tumor necrosis factor-a; TIMP-1, tissue inhibitor of
metalloproteinase-9; U-87-MG, human glioblastoma-astrocytoma, epithelial-like cell line.; - Reproduced with permission from Hohenforst-Schmidt et al.16
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Table 4. Surgically resected tumor tissue after death

Tumor volume in mm3 Tumor weight in grams

Control
1 44� 25 8.3
2 23� 15 3.2
3 34� 26 6.3
4 30� 21 3.3
5 43� 32 10.5
6 40� 28 9.8
7 39� 27 9.5
8 34� 26 6.5
9 27� 18 6.7
10 42� 24 9.8

Group 1 (intravenous administration)
1 29� 26 8.3
2 12� 8 1.1
3 13� 12 2.1
4 27� 22 6.6
5 28� 18 5.5
6 12� 11 1.5
7 26� 19 7.8
8 26� 18 6.9
9 26� 18 7.2
10 28� 22 8.1

Group 2 (intratumoral administration)
1 22� 20 9
2 30� 23 9.6
3 28� 24 8.6
4 31� 22 6.8
5 28� 25 5
6 28� 21 6.7
7 22� 18 4.5
8 31� 24 9.2
9 30� 25 8.3
10 29� 26 8.7

Table 5. Tumor measurement from experiment initiation and every
7 days

First measurement Second measurement Third measurement

C1 7.5� 5.8 (126.15) 25.6� 12.1 (1874.05) 42.4� 23.5 (11 707.7)
C2 10� 9.3 (432.45) 23.2� 15.3 (2715.44)
C3 9.2� 4.7 (101.61) 24.1� 19.3 (4488.5) 34.3� 26.5 (12 043.59)
C4 6.3� 3.2 (32.26) 21� 17.5 (3215.63)
C5 10.3� 7.4 (282) 29.4� 22.3 (7310.16) 43.2� 32.7 (23 096.66)
C6 6.5� 3.4 (37.57) 21.7� 18.1 (3554.57) 38.1� 27.1 (13 990.51)
C7 6.4� 3.8 (46.2) 21.9� 17.6 (3391.87) 37.7� 26.2 (12 939.39)
C8 9� 4.2 (79.38) 23.8� 18.9 (4250.8) 33.9� 25.7 (11 195.3)
C9 6.1� 3 (27.45) 20.1� 17.2 (2973.19)
C10 9.7� 4.4 (93.9) 24.4� 19 (4404.2) 41.7� 23.6 (11 612.62)
1.1 6.2� 3.7 (42.44) 19.1� 18.5 (3268.49) 27.2� 25.8 (9052.7)
1.2 11.3� 5.4 (164.75)
1.3 12.3� 7.2 (318.82) 12.8� 12.2 (952.58)
1.4 9.1� 6.3 (180.59) 13.8� 13 (1166.1) 26.6� 22 (6437.2)
1.5 5.7� 4.8 (65.66) 13� 7.5 (365.63) 25.8� 17.5 (3950.63)
1.6 11.2� 6.4 (229.38) 11.5� 10.8 (670.68)
1.7 5.5� 4.4 (53.24) 12.2� 8.1 (400.22) 24.9� 18.2 (4123.94)
1.8 10.5� 5.2 (141.96) 13.8� 8.2 (463.96) 25.9� 17.8 (4103.08)
1.9 6.2� 5.1 (80.63) 13.1� 7.9 (408.79) 25.6� 17.3 (3830.91)
1.10 9.2� 6.1 (171.17) 14� 13.2 (1219.68) 27� 21.7 (6357.02)
2.1 6.8� 3.5 (41.65) 20.6� 15.8 (2571.29)
2.2 10� 6.7 (224.45) 19.3� 15.6 (2348.42) 27.5� 21.8 (6534.55)
2.3 9.4� 4.8 (108.29) 16� 14 (1568) 26.6� 23.7 (7470.48)
2.4 8.9� 5.1 (115.74) 16.7� 15.7 (2058.19) 26.7� 19.6 (5128.54)
2.5 7.1� 4.9 (85.24) 20.5� 14.7 (2214.92) 27.5� 24.6 (8320.95)
2.6 8.7� 4.7 (96.09) 16.5� 15.1 (1881.08) 26.4� 19.1 (4815.49)
2.7 6.5� 3.6 (42.12) 20.1� 15.9 (2540.74)
2.8 9.8� 6.3 (194.48) 19.1� 15.2 (2206.43) 27.3� 21.5 (6309.71)
2.9 9.1� 4.9 (109.25) 16.1� 14.3 (1646.14) 26.8� 23.9 (7654.21)
2.10 7.3� 5.2 (98.7) 20.7� 14.9 (2297.8) 27.8� 24.8 (8549.06)

Tumor volume measurements in mm3. Number in parenthesis represents
volume measurement after the additional equation ½(length�width2) se
mm3. In groups 1 and 2, tumor growth rate is reduced in comparison to
the control.

Figure 1. Macroscopic appearance of lung in different groups (a–c: control group, d–f: intravenous group, g and h: intratumoral group).
Black arrows indicate macroscopic lung metastasis. Macroscopic surface metastases were observed only in lungs of the control group (panel c:
black arrows).
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within the tissue and if possible through local vessels and
lymphnodes throughout the systematic circulation.54 This
observation has been done with aerosol local chemotherapy
administration where distribution of the administered drug
was observed in the local lymph nodes and local cisplatin
concentration was correlated with systematic.54,55 It has been
previously stated that rapid tumor cell proliferation and weakly
developed lymphatics cause high IFP and blood vessel remodeling
by intus-susception or compression.51 Therefore high interstitial
pressure is observed in the center of the tumor, which blocks the
efficient distribution of the drug, whereas this effect is diminished

while moving from the center of the tumor to the periphery.
The ECM differs between normal tissue and cancer tissue.
The following collagen types I, II, III, V and IX, tenasin C, fibronectin
and proteoglycans exhibit increased accumulation and generate a
dense network in tumor tissues. Moreover, excessive deposition of
ECM components decrease the distance between neighboring
ECM components and diminish the pore size of the tumor matrix.
Increased ‘stiffness’ of the ECM in cancer tissue is observed and
therefore the efficient distribution is again blocked for various
molecules such as; anti-tumor immune cells, chemotherapeutic
agents, therapeutic viruses, immunotoxins, interferons, monoclonal

Figure 2. (a) Lung micrometastasis control group; (b) yellow arrow indicates root of intratumoral injection and gene-complex release, white
arrow indicates tumor necrosis and black arrow indicates the gene-complex (c) black arrow indicates the gene complex and white arrow
tumor necrosis; (d) primary tumor cells (back inoculated tumor).

Figure 3. (a) Black arrow represents Ki67 expression; (b) white arrow represents the tumor and black arrow represents the TTF-1.
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antibodies and complement.51 First, ECM influences the IFP.
Furthermore, the abnormal architecture of vessels and lymphatics
are responsible for blocking the defense mechanisms of the body,
such the M2 macrophages. The intravenous-administered drugs
once administered reach the tumor sites and exit the tumor
vasculature and translocate through the interstitial space in order
to reach their target cells. Trans-endothelial transport of
macromolecular drugs involves a phenomenon known as the
EPR effect in solid tumors.51 We need the EPR effect for the leaky
abnormal vessels within the tumor to enhance the different
macromolecule distribution. The EPR effect is enhanced with
novel nanocarriers.33,38,48,56–58 It has been previously observed
that the hyper-permeability of the tumor vessels in combination
with the absence of functional lymphatics induce a prolonged
deposition of several drugs. The hyper-permeability (410 nm)
allows drug molecule’s transportation within the tumor tissue;
however, not in the normal tissue where particles 410 nm cannot
be transported. Therefore this effect can be used as a method of
normal tissue protection. It has to be stated that the EPR effect
differs between cancer types and within the tumor from one
region to another.59 The tumor tissue matrix is a very important
parameter; dense extracellular fibers and matrix within the tumor
will block large NPs to efficiently penetrate the tumor
and diffuse.60,61 Renal clearance is more rapid in smaller
NPs (o6 nm), while reticuloendothelial clearance is usually

avoided with PEGylated drug, like in the case of pegylated
liposomal doxorubicin.62,63 Moreover, the shape and charge of
NPs have an important role in the diffusion efficiency. Elongated
NPs penetrate the vascular flux more efficiently when compared
with spherical particles.64 Cationic NPs transported more
efficiently when compared with neutral or anionic.65,66 Novel
nanoparticles are designed to decrease their size upon acidic
pH and matrix metalloproteinases (MMPs), however; further
experimentation is needed in order to draw a clear conclusion
how these parameters interact with the tumor microenviron-
ment.67,68 The IFP is high within solid tumors and inhibits the
penetration of drugs.69 Increased IFP is also due to a dense ECM
and inadequate lymphatic drainage.70 Again increased IFP inhibits
drug penetration within solid tumors. High levels of hyaluronic
acid (HA) have been found in the ECM of solid tumors and are
collated with increased IFP. Administration of HA-targeting
enzyme (PEGPH20) was able to diminish the HA levels and
therefore vessels were patent and drug penetration was
efficient.71 Furthermore, upon designing the study we should
know how the administered solution will be diffused throughout
the target tissue. Positron emission tomography is one method
previously used to identify the optimal volume/concentration for
intratumoral administration.72 There are two major methods of
transportation: the passive and active targeting. The active
transportation is based on the ligand–receptor interaction, while
in the passive transportation the diffusion of a compound within
the tissue is based on its physical properties.30 Gene therapy has
been previously investigated targeting epidermal growth factor,
vascular endothelial growth factor, KRAS, immunotherapy, ECM
factors and tumor microenvironment.42,48,49,73–76 Additional
methods of enhancing the intratumoral gene therapy have been
previously performed with the addition of radiotherapy,
chemotherapy, thermal ablation, sorafenib, imatinib, use of
ultrasound system, rituximab and dendritic cells to gene therapy
administration alone.34,77–82 In our current study, we used the
novel non-viral vector DDMC as the vehicle for the local
intratumoral administration of pSicop53. The DDMC was
synthesized by graft polymerization of methyl methacrylate
(MMA) onto 2-Diethylaminoethyl-Dextran Methyl Methacrylate
Copolymer (DAEX). These copolymers have hydrophobic and
hydrophilic regions and have high transfection efficiency and they
can also be sterilized by autoclavation.83 Investigation with DDMC/
DNA presented in vitro higher transfection efficiency in COS-7 cell
lines84 when it compared with DAEX/DNA in HEK293 cell lines.85

DDMC has efficient absorption capability both for RNA and DNA.
This is due to their cationic property and has been found to be
influenced by pH and ionic strengths.86 Furthermore, the DDMC/
DNA formation reaction is influenced by the Coulomb forces.
The hydrophobic bonding strength as well as the hydrogen
bonding strength have a role due to the hydrophobicity of the
grafted MMA sections. Optimal cell affinity was also previously
observed.87 The DDMC/DNA and gene transfection are still under
investigation.83

CONCLUSIONS
Intratumoral gene therapy can be used alone or in combination
with additional methods, such as radiotherapy and/or chemother-
apy. Gene therapy could be used to sensitize chemo-resistant or
radio-resistant tumors during the treatment course. The applica-
tion currently can be done in lesions visible within the respiratory
tract or using the endobronchial ultrasound bronchoscope. It is an
efficient method of treatment; however, current studies indicate
that a combination with additional modalities as previously stated
offer improved disease control. Intratumoral gene therapy for lung
cancer still has to find its place in the algorithm of treatment
either as neo-adjuvant in early-stage disease or as a palliative in
advanced stages.

Figure 4. Insoulin syringe 1ml (100Units) and 27-gauge needle.
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MATERIALS AND METHODS
Non-viral vector and p53
The non-viral vector was purchased from Ryujyu science corporation,
Seto-City, Japan by PZ and AB under the contract EG179806487JP
(A18503015(121223b1), A18503016(121227b3), A18503017(121227b4),
A18503018(121227b5), A18503019(130228b8) and A18503020(130228b10)).
The non-viral vector has the following characteristics: fast and easy
procedure, stable for autoclaving sterilization at 121 1C for 15min,
broad peak performance, applicable in high-throughput screening, no
serum inhibition, broad cell line range, best results with siRNA
applications, excellent reproducibility, low toxicity in comparison with
DEAE-dextran, high efficiency by use of low DNA amounts, a high DNase
protection facility by DNase degradation, and best price/value ratio.
The plasmid p53 was purchased from Addgene (Cambridge, MA, USA) as
‘Addgene plasmid 123519, 124665, 125156,125157’. Enhanced green
fluorescent protein is expressed from this plasmid as a marker, but it is
not a fusion protein. Cre causes enhanced green fluorescent protein to
be recombined out of the construct, activating shRNA expression (Vector
backbone: pSico, Vector type: Mammalian Expression, Lentiviral, RNAi,
Cre/Lox).88 The preparation of the complex (non-viral vector-p53) has
been previously described, and 0.2ml was chosen to be the injected
volume for both the investigated groups.89,90

Mice
Thirty C57BL/6 mice aged 7–8 weeks were purchased from the
Hellenic Institute (Athens, Greece) PASTEUR (code 000.2481) with
purchase code A-DA00000399 and were divided into three groups.
The Institute has the following authorization for production and
experimentation of mice EL 25 BIO 011 and EL 25 BIO 013. The mice
included were isolated (one per cage) in a temperature-controlled room
on 12-h light–dark cycle and were allowed free access to food and water.
The Lewis lung carcinoma cell line was obtained from ATCC (LGC
Standards GmbH, Wesel, Germany) (CRL-1642). The cells were routinely
cultured in 25-cm2 tissue culture flasks containing RPMI (ATCC, 30-2002)
supplemented with 10% fetal bovine serum (Biochrom, Thessaloniki,
Greece) according to the supplier’s instruction. The cell line was
incubated at 37 1C in 5% CO2. The doubling time of the cell line was
21 h.91 At confluence, cells were harvested with 0.25% trypsin and then
were resuspended at 1.5� 106 cells in 0.15ml phosphate-buffered
saline, Dulbecco, Biochrom), which was injected in mice. The back was
inoculated subcutaneously (27-guage needle). The tumor volume was
measured once weekly using bidimensional diameters (caliper) with the
equation V¼ 1/2ab2, where the a represents the length and b the width
(mm3). The tumor was grown on the back of the mice (Figure 4).
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