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1. INTRODUCTION

BIOMETRICAL genetics, the study of quantitative inheritance, has been almost
exclusively concerned with diploid species and at this level of ploidy has
had outstanding success as a fundamental science and proved a useful adjunct
to plant and animal breeding programmes. There are, however, several
crop plants (e.g. potatoes, coffee, lucerne and several forage grasses) which
are autotetraploids and in which the pattern of inheritance is tetrasomic, not
disomic. The considerable breeding effort which has gone into the improve-
ment of these cultivars has therefore had to proceed without the benefit of
reliable information about the genetical architecture of the metrical traits
under selection. A knowledge of the types of gene action underlying these
traits should help the efficiency of selection by indicating the most appropriate
choice of parents and the most suitable method of selection by which to
proceed.

In this paper consideration will be given to the information that can be
obtained from the generations derived from a cross between two autotetra-
ploid homozygous lines. It therefore follows directly on from the work of
Mather and Jinks (1971).

2. NOTATION

With two alleles, A and a, at a locus (the maximum when starting with
two homozygous lines) there are three possible genotypes in diploids (AA,
Aa, aa) but five in tetraploids. These are

AAAA or A4 quadruplex
AAAa or A3a triplex
AAaa or A2a2 duplex
Aaaa or Aa3 simplex
aaaa or a4 nulliplex

These must be ascribed algebraic values before the expectations of any
statistics can be calculated. By analogy to diploids (Mather, 1949) we
might have

A4 = m+d
A3a = A2a2 = Aa3 = m+h

a4 = m—d

where m is the midparentvalue, but this denies any possibility that the triplex,
duplex and simplex genotypes have different values, as they would if, for
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instance, the genetic effect was proportional to the dosage of one allele.
This can be overcome by altering the triplex and simplex values to

A3a = rn+d+-h
Aa3 = m—4d+k

which expresses their intermediate state between the duplex and homozygous
genotypes. With complete dominance, however, the value of the simplex
genotype becomes m when it would be expected to become m + d (= m+ h),
so this scheme has a serious shortcoming. Dessureaux (1959) attempted to
provide a solution by giving the triplex and simplex genotypes values of

A3a = m+Ad
Aa3 = rn—Ad

where A = — h/d if h d
or A = + h/d if h —d.

He showed the effect of this was to give the triplex and simplex genotypes
values of

A3a = m+d+h
Aa3 = m—d+Ih.

The difficulty here is that the parameters are not independent but are defined
in terms of each other.

Secondly, the simplex genotype makes a contribution to the h parameter
three times that of the triplex genotype which is bound to create ambiguity
in the interpretation of the dominance parameter, especially from the
second-degree statistics where the effect is squared.

On the whole the safest general scheme appears to be to allow the triplex,
duplex and simplex genotypes to take unique values of h3, h2 and h1 respec-
tively (Mather and Jinks, 1971). Whilst this increases the number of para-
meters it avoids making any assumptions about the relative genetical values
of the genotypes.

During polyploid meiosis sister chromatids may enter the same gamete.
This process, known as double reduction (Mather, 1936), results from recom-
bination between the centromere and distal genes followed by a particular
orientation of the chromosomes on the second metaphase spindle. The
coefficient of double reduction (c) represents the proportion of gametes in
which sister genes occur. has a theoretical maximum limit of 4 (0.1428)
and a minimum value of zero (when segregation is "chromosomal ", i.e. the
genes are transmitted as if they were completely linked to the centromere).
The five genotypes produce gametes in the proportions shown in table I
(Fisher, 1949).

TABLE 1

Gamelic output in an autotetraploid

Gametes
Parental
genotype AA An aa Divisor

A4 1 1

A3a 2+a 2(1—cc) cc 4
A2a2 1+2cc 4 (i—cc) 1+2cc 6
Aa, cc 2(l—cc) 2+cc 4
a4 1 1
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TABLE 2

Expected genotypic proportions of generation means wit/i double reduction

Quadruplex, d Triplex, h3
A _______________

Generation cc oc2 E3 cc4 1 CC2 SC3 SC4

P1 1 — — — — — — — — —
F1 — — — — — — — — — —
F2 I36 1/9 1/9 — — 2/9 2/9 _4/9 — —
F3 /72 /27 /i2 _i/12 1/54 2/ 2/27 _5/9 1/3 _2/27
F4
F2bip /8i 14/81 11/108 —Isi 1/81 20/81 /81 _17/27 28/81 —/81
F2xP1 2/9 /18 _1/9 — — 5/9 _7/9 2/9 — —
F2xP2 — — — — — — — — — —
F2xF1 1/27 sf36 1/9 _1127 — 13/54 1/6 _5/9 /27 —

B1xF1 19/216 2/9 1/12 _1/54 23/54 _1/9 /18 2/27 —
B2XF1 1/216 /18 1/12 .....i/54 — 5/54 2/9 —v/ia 2/27

—
B1 1/6 1/3 — — — 2/3 _2/3 — —

B2 — — — — — — — — — —
B11 19/36 /18 —'ha — — 4/g _5/9 1/9 — —

B12 — — — — — — — — — —
B22 — — — — — — — — —

B21 1/36 s/is _i/18 — 4/9 _5/9 1/9 — —

B1self /216 13/36 —'/72 _1/216 10/27 —/18 — 1/54 —

B2self 1/216 1/36 /72 '/2i6 — 1/27 /18 _1f3 1/54 —
Bibip 361/1296 /324 1/54 _10/324 1/324 "/162 _13/54 10/8, _1/si
B2bip 1/1296 /324 2/27 _10/324 1/324 2/8, /162 •-/162 10/81 1/81

Duplex, /2 Simplex, h1 Nulliplex, —d
A A ____________ ____________

C 'C I
SC SC2 SC3 SC CC SC2 SC3 CC4 1 SC2 SC3 Sc4

1/2 _2/3 2/3 — — 2/9 2/9 _4/9 — — 1/39 1/9 1/9 — —

13/36 _2/3 51/54 —/2 1/9 2/9 2/27 _5/9 1/3 _2/27 /72 /27 1/12 _h/12 1/54
See Text

11/27 _14/27 19/ia _14/27 2/27 20/s, /8i _17/27 28/81 —/81 /8i 14/81 11/108 —/81 1/81

2/9 v/is _1/9 — — — —
2/9 /ig _i/9 — — 5/9 _7/9 2/9 — — 2/9 /18 _i/9 — —

4/9 —/18 8/9 _2/9 — 13/54 /6 _5/9 /27 — /27 5/39 1/9 /27 —
Iis —/i8 11/18 _1/ — 5/54 2/9 —/i8 2/27 — 1/216 1/18 1/12 _i/54 —
7/is —'i/is 11/18 _1/9 — 23/54 _1/ —/18 2/27 — 19/216 2/9 i/iz _1/54 —
1/6 1/3 — —— — —_

1/6 1/3 — — — 2/3 _2/3 — — — 1/6 1/3 — — —
1/36 /18 _1/,8 — — — —

19/36 s/is _1/18 — — 4/9 5/ 1/9 — —_ 1/36 5/ —1/ia — —

1/39 /18 _1/18 — — 4/9 _5/9 1/9 — — /36 /18 1f18 — —
19/36 s/is _1/is — — — —

1/4 __5/g 11/39 _i/39 — 1/27 'ha _]3 /si — /216 1/36 /72 ''/2I6

1/4 —'his 11/36 _1/39 10/27 —v/is — 1/54 /2i6 '/36 —/72 _1/216 —
I64s _10/54 /2 _10/54 1/54 2/si /i6z /162 10/81 _1/si 1/1296 /324 2/27 _b0/324 1/324
147/648 _10/54 1/2 _10/54 1/54 38/j —/162 _13/54 10/81 Vsi 361/1296 /324 1/54 /324 1/324
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3. FIRST-DEGREE STATISTICS

(a) Generation means

The expected means of 22 generations which can be derived from an
initial cross between two inbred lines are shown in table 2 in the form of
proportions of the five genotypes. The algebraic mean is easily derived by
adding m, the midparent value (= j(P1 + P2)) and putting d = (quad-
ruplex —nulliplex) and h3, h2 and h1 equal to the triplex, duplex and simplex
genotypes respectively. The generations are the two parents, the selfing series
from F1—F4, biparental progenies (F2 bip), the first and second back-
crosses, the first back-crosses selfed, sibbed (B1 bip, B2 bip) and crossed to the
F1, and the F2 crossed to the parents and F1. The complexity caused by
double reduction is well illustrated by the selfing series. The F4 mean not
shown in table 2 is

F4 = A4, a4; -ws- (633+l382x642438cc
+258o4—78a5+ l26)
A3a, Aa3; -a--- (744— l20x— 1896x2 +2040a3
— l032oc4+3l2c*5—48x6)

A2a2; (1134— 2520a + 3924c2 —32O4a3

+ l548c4—468sc5+72sc6).

Terms to the sixth power of c will, of course, be small even when = 014.
Even if segregation is chromosomal the expectations are more complex than
experienced in diploids. As in diploids, though, there is a symmetry about
the means. For instance in the selfing series, F2 bip, and F2 x F1 the co-
efficient of A4 is the same as that of a4 and the coefficient of A3a is the same
as that for Aa3. In the first and second back-crosses the coefficient of A4
is the same as that of A2a2, and the coefficient of A3a is the same as that of
Aa3, in the appropriate reciprocal cross. Similar correspondences between
reciprocal crosses of the same generation can be seen in table 2.

Unlike diploids, the F2 mean does not equal the F2 bip mean, nor in the
back-cross generations is the coefficient of the additive parameter equal to
that of the dominance parameter, though for B1 the coefficient of the duplex
genotype equals that of the quadruplex (or the nulliplex for B2). Table 3
shows the proportions of the five genotypes for each generation for c 00
and Ol4. It is clear from this that the decline in heterozygosity on
selfing is considerably slower than in diploids.

(b) Effect of double reduction
Whilst table 3 indicates the extreme effects of double reduction it does

not show the effect of double reduction at intermediate values of cc. This
is shown in figs. 1-3. Only one reciprocal of each generation is shown; it is
a straightforward matter to infer the changes occurring in the other recipro-
cal using table 2. For instance, fig. 2 shows only B11 of the four second
back-crosses, but using table 2 we see that the coefficient of the quadruplex
for B11 equals that of the duplex for B12 and B21, and that of the nulliplex
for B22; the coefficient of the triplex for B11 equals that of the triplex for B21
and of the simplex for B12 and B22; and the coefficient of the duplex for B11
equals that of the nulliplex for B12, the duplex for B22 and the quadruplex for
B21. Similar equivalents allow the changes due to double reduction in all
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TABLE 3

Genotypic proportions of generation means at limiting valuec of E

Generation Quadruplex Triplex Duplex Simplex Nulliplex
P1 1-000 — — — —

1.000 — — — —

P2 — — — — 1-000
— — — — 1.000

F2 — — 1000 — —
— — 1-000 — —

F2 0028 0-222 0500 0-222 0-028
0-046 0245 0-420 0-245 0-046

F3 0097 0222 0361 0222 0-097
0-135 0223 0285 0-223 0-135

F4 0•163 0191 0292 0•191 0163
0-212 0-179 0219 0179 0212

F2 bip 0049 0247 0407 0-247 0049
0-075 0248 0-354 0-248 0-075

F2 x P1 0.222 0556 0-222 — —
0-274 0-451 0-274 — —

F2 x P2 — 0-222 0-556 0222
— — 0-274 0-451 0274

F2xF1 0-037 0241 0.444 0241 0-037
0-059 0-254 0-376 0-254 0-059

B1 x F1 0-088 0-426 0-389 0-093 0-005
0-121 0-403 0-346 0-116 0-014

B2xF1 0005 0-093 0-389 0-426 0-088
0-014 0-116 0-346 0403 0-121

B1 0-167 0-667 0-167 — —
0-213 0-573 0-213 — —

B2 — — 0-167 0-667 0•167
— — 0-213 0-573 0-213

B21 0-528 0-444 0-028 — —
0-566 0•369 0-066 — —

B12 — — 0-528 0-444 0-028
— — 0-566 0-369 0-066

B22 — — 0-028 0-444 0-528
— — 0•066 0-369 0-566

B21 0028 0444 0-528 — —
0-066 0-369 0.566 — —

B1 self 0-338 0-370 0-250 0-037 0-005
0387 0-316 0-217 0•069 0.010

B2 self 0-005 0-037 0-250 0-370 0-338
0•010 0-069 0-217 0-316 0-387

B1 bip 0-279 0-469 0-227 0-025 0-001
0.320 0-417 0-210 0-048 0-004

B2 bip 0-001 0-025 0-227 0-469 0-279
0-004 0-048 0•210 0-417 0-320

Upper line E = 0-0; lower line = 0•14.
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FIG 1.—Changes in the proportions of the quadruplex (Q), triplex (T), duplex (D), simplex
(S) and nulliplex (N) genotypes with double reduction in the following generations:
F2 (top left), F3 (top right), F4 (bottom left) and F2 bip (bottom right).

22 generations to be traced from figs. 1-3. The changes in frequencies of
the genotypes with double reduction are linear or nearly so (where the
regression is curvilinear this is so slight that it does not appear in figs. 1-3),
despite the complex terms involved. This is probably due to cancellation of
terms with opposite sign and to the very small range of values that a may
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FIG. 2.—Changes in the proportions of the quadruplex (Q), triplex (T), duplex (D), simplex
(S) and nulliplex (N) genotypes with double reduction in the following generations:
B1 (top left), B11 (top right), B1 selfed (bottom left) and B1 bip (bottom right).

take; curvature would be more apparent if could take values up to—say——
unity. As it is, terms with high powers of make a negligible contribution
to the total; for instance when = Ol4, c = 0002744, so that terms above

will have little effect on the regression lines.
Y
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FIG. 3.—Changes in the proportions of the quadruplex (Q), triplex (T), duplex (D), simplex
(S) and nulliplex (N) genotypes with double reduction in the following generations:
B1 x F1 (top), P1 x F2 (bottom left) and F1 x F5 (bottom right).

In five generations double reduction causes the relative frequencies of
genotypes to change. In the F4 the relative frequencies of quadruplex and
triplex change at cc =007. In B1 selfed the relative frequencies of quadruplex
and triplex change at cc = 0.04 (in B2 selfed it is the nulliplex and simplex
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which change). In B1 x F1 the relative frequencies of quadruplex and sim-
plex change at ix = 0'08 (in B2 x F1 it is the nulliplex and triplex which
change). The F1 x F2 generation shows little change in the proportions of the
genotypes with double reduction and the triplex and simplex genotypes alter
very little in the F3 and F2 bip generations. With these exceptions double reduc-
tion causes other changes in the proportions of the genotypes which would
have a marked effect on the estimation of parameters from generation means.

In every generation double reduction causes the proportions of quad-
ruplex and/or nulliplex genotypes to increase, and consequently the overall
proportion of heterozygous genotypes (simplex, duplex and triplex) to
decline. This is as expected since double reduction must cause inbreeding
by allowing sister chromatids to enter the same gamete. Table 3 shows the
actual increase in homozygosity over the whole range of ix values. Thus in
the F2 the increase in homozygosity when ix changes from 0'O to 0l4 is
35 per cent., in the F3 it is 7'5 per cent. and in the F4 it is 98 per cent., with
proportional decreases in the amount of heterozygosity. Put another way, on
selfing the F2 there is an increase in homozygosity of l3'9 per cent. if ix= 00
and of l79 per cent. if ix = 014. On selfing the F3 homozygosity increases
by 13l per cent, if lx = 00 and 15'4 per cent, if iX 0.14. Similar increases
in homozygosity occur in other generations.

A secondary effect of double reduction may also be noted. With the
exception of the first back-crosses selfed and the second back-crosses, double
reduction increases the proportion of the rarest genotype, and decreases the
proportion of the commonest genotype, in any generation. The effect is to
even up the frequencies of the genotypes in the various generations, and is
most marked in the selfing series, F2 bip and the first back-crosses.

(c) Scaling tests
The principle of scaling tests (Mather, 1949) is to detect deviations from

additivity of gene action by combining generation means in such a way that
the expected total is zero if the character is controlled only by additive and
dominance gene action. Non-additivity is usually acribed to epistasis,
though other genetic causes (e.g. residual heterozygosity) could be responsible
for failure of the scaling tests.

Apart from the A, B and C scaling tests of Mather (1949), and the various
associated tests based on the formula P = (P1+ P2) + scaling tests
have been developed by Opsahl (1956), van der Veen (1959) and Hill (1966).
Using the general notation described in section 2 of this paper, none of these
scaling tests is satisfactory; with only additive and dominance gene action
the expected totals are not zero. Nor will any of these tests work if the three
heterozygous genotypes are pooled, i.e. h1 + h2 +h3 = h.

Using the special definitions that A3a = m+ d+ h and Aa3 = m —
12d

+ h, six tests are satisfactory even with double reduction. These tests are

A = P1+P1—2fl1
B = P2+F1—22 of Mather (1949)

B11 = 3P1+P1—411
B12 = P2 + 3P1 —

B22 = 3P2--F1—4B22
B21 = P1+3F—4B21 of Hill (1966)
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Using the special definition of Dessureaux (1959), three of these tests—the
A, B11 and B12—are satisfactory even with double reduction. Nevertheless,
the reliability of these scaling tests depends on the definition of the parameters
being satisfactory, which is open to doubt.

It has been possible to devise two scaling tests which are satisfactory
using the general definition. These tests (which also hold for disomic
inheritance) are

P1—P1+2B21—2B11 = o

P2—P1+2B12—21322 = 0.

The variances of these tests are

V + V + 4V + 4V and
V + V + 4V + 4V respectively.

These two scaling tests are unaffected by the degree of double reduction
The scaling test of Cavalli (1952) can, of course, be adapted to any generation
and any type of inheritance. It would therefore be quite satisfactory when
applied to tetraploid data.

4. SECOND-DEGREE 5TATI5TICS

Using the notation that d = (A4—a4), h1 = Aa3, h2 = A2a2 and h3
= A3a, the expectations of second-degree statistics may be calculated. Thus
the F2 variance is

j(l +4+42)d2+(14+ l0c_24a2 + l6x3— l6cc)(h+h) +
(9— l6E2+32c3— l6a)h+-(—6+2a+ l2oc2—24a2— l6E4)(h1h2
+h2h3) +( —8— l6a+24a2+ 32a3—32a4)h1h3.

Similarly, the variance of B1 is

-(5 + 8a—4c2)(d2+h) +*(2 + 2E—42) (h—h2h3 —dh3)—-(1 —4c.+42)dh2.

Whilst all second-degree statistics could be calculated taking double
reduction into account there would appear little to be gained for the extra
labour required. The results given here have therefore been based on the
special case where c 0.0 (i.e. segregation is chromosomal). Many statistics
can be derived from the 22 generations listed earlier in this paper, but atten-
tion here will be restricted to statistics obtainable from the selfing series,
F2 bip, the first and second back-crosses and the first back-crosses selfed.
The genetical expectations of these statistics are given in table 4. Statistics
such as the covariance of B12 and B1 selfed can, of course, only be obtained
by using common parents; where fertility is low this may not be possible.
Ten parameters need to be estimated though if all the h and dh terms are
summed this can be reduced to three, in which case the assumption that all
the terms in h are equal (h1 = = h3) has been made, and a possible error
introduced.

Apart from the F2 the coefficients of the parameters in the selfing series
are very complex and involve terms in dh, though since the coefficients of dh
are of the same size but opposite sign these disappear from the model on
summation of the parameters. However if h3 is not equal in effect to h1,
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genie effects of dh terms will still exist in the data though they are not
allowed for in the model. The sign of dh is positive for the mean variances
and negative for the variance of means and covariance statistics. As with the
mean of the F2 and F2 bip the variance of the F2 does not equal the total
F2 bip variance (VF2 bip + VF2 bip). This is expected since in polyploids
a single round of random mating is not sufficient to bring a population into
equilibrium (Bennet, 1954).

The first and second back-cross statistics do not use all ten parameters
simultaneously, so that separation of their effects should be easier. It may
be noted that here, as in diploids, the coefficient of d2 is equal to that of

so that additive and dominance effects may be estimated with equal

precision.
The variances may be estimated by either of two procedures.

(a) By using the analysis of variance the phenotypic variation of each
generation (except the F2 and first back-crosses) may be partitioned into
that within families and that between families. The two mean squares have
expectations of:

Between families M.S. = 4 +ncr
Within families M.S. = 4

where n is the number of individuals per family. The two a2's may thus be
separated and ascribed the genetical expectations shown in table 4. Assum-
ing single plant randomisation, the expectation of the within family variance,
4, also contains an environmental component, B1, which is estimated as the
mean variance within parental and F1 lines.

(b) By direct estimation of the phenotypic variances within and between
families for each generation. For the latter statistic the data used are the

family means so its expectation is —of the between families mean square in

the analysis of variance (i.e. -4+cr). Whereas the within family variance

is identical when estimated by either procedure, the expectation of the be-

tween families variance estimated by method (b) is incremented by —of the

within families variance and this includes B1. Therefore when method (b)
is used to estimate the between families variance of any generation a correc-
tion needs to be made before the genetical expectation in table 4 is ascribed.
If individual plant randomisation is not used, the expectations of thevariances
between families also contain an environmental component, E2, but this is
zero with single plant randomisation.

The main difficulty in estimating parameters from the variances is likely
to be the small, but variable, coefficients involved. If we consider as an
example the variance of second back-cross family means we see that the
coefficients of d2, hj/zj and are some 15 times greater for B11 and

B22 than for B12 and B21. In the case of the mean variances of second back-
crosses the coefficients of the summed parameters (d2, h1/z5, dlii) of

B11 and B22 are about eight times those of B12 and B21. So that for VB11 and
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VB,, the coefficients of the genetical parameters are about a fifth (41/2 16)
that of E1 and for VB,, and VB,1 they are about a fortieth (5/216) that of
E1. There is clearly a possibility that, in practice, the genetical variation
will be "drowned" by the environmental variation and that the estimates
of the genetical parameters will be imprecise. This does not apply to co-
variances which have no environmental component in their expectations
(Mather, 1949).

5. Dxscussio

Scaling tests provide unambiguous qualitative information as to the
presence or absence of epistasis (Perkins and Jinks, 1970). It is therefore
possible to assess the adequacy of a simple additive and dominance model
before estimating any parameters. If the scaling tests described in this paper
show epistasis to be absent, the components of generation means may be
estimated using the method of Cavalli (1952). The components are m, the
midparent value, d, h1, h2 and Jz and their products with to various powers.
Excluding the F4 mean there are potentially 21 such parameters, and if the
F4 mean is included there are 27 parameters (because here we need to specify
ci.h1, x6h1, etc.). Since we have only 22 generation means from which to
estimate these parameters the F4 must obviously be excluded. The model to
be fitted can be varied in complexity until a satisfactory fit is obtained. Thus
at first the model might only contain the parameters m, d, h1, h2 and h3. If
the fit is unsatisfactory (i.e. the x2 is too large) the parameters ouf, xh1, cth2
and c.h3 may be added. Parameters with successively higher powers of may
continue to be added until a satisfactory fit is obtained. A description of this
approach applied to diploids is given by Jinks and Perkins (1969) for the
estimation of linked epistatic parameters from generations means. The
linearity of the regression lines in figs. 1-3 suggest that it would be unnecessary
to fit parameters with cc raised to a power greater than 1. Nine parameters
would therefore have to be fitted and so ten (or more) generation means may
be adequate for the purpose of estimating them. Comparison of the relative
sizes of h1, h2 and h3 may indicate that one of the special definitions of these
parameters described in section 2 of this paper may be appropriate in which
case a simpler model may be fitted.

Ten parameters are specified in the expectations of second-degree statis-
tics, and hence at least ten statistics are required for their estimation. These
parameters have been shown to have relatively small coefficients and hence
their estimation will be subject to a large error. If the analysis of generation
means suggests that h1, h2 and h3 can be combined into a single parameter the
number of second-degree parameters is reduced from ten to three and the
coefficients are larger, though still small in comparison with that of the
environmental component. Consequently the analysis will be easier and
more accurate if such simplification is justified. Since covariances do not
have an environmental component in their expectations they are potentially
more useful than variances. A common drawback to the use of covariances
is that they frequently involve the use of two non-contemporary generations,
e.g. W F2/F3, and therefore the measurements must be made in different
seasons causing the statistics to be distorted by genotype-environment inter-
actions. Fortunately several polyploids (e.g. potatoes) can be propagated
vegetatively so the parent may be measured at the same time, and under the
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same conditions, as its progeny. Even so, it would seem that in tetraploids
first-degree statistics are likely to be a more fruitful source of information
than second-degree statistics.

Polyploids are frequently found to be highly heterozygous and difficulty
may be experienced in obtaining homozygous lines. Selfing an autotetra-
ploid to.obtain inbred lines is slower than selfing a diploid (see table 3); to
attain the same degree of homozygosity as a diploid takes 38 times as long
with no double reduction and 29 times as long if cc = Ol4 (Parsons, 1959).
Seven or eight generations of selfing are required to make an initially hetero-
zygous diploid 99 per cent. homozygous (Fisher, 1949). Parsons (1959)
shows that tetraploids require 27 or 28 generations of selfing to achieve the
same degree of homozygosity if cc = 0; if cc = 0.14, 20 generations of selfing
will suffice. It would clearly be worth while to reduce the tetraploid to the
diploid level, inbreed for several generations and then double the number of
chromosomes using colchicine, provided it was technically feasible. How-
ever, other difficulties may occur. For instance, diploid potatoes have a self-
incompatibility system which is not expressed in the tetraploid forms. The
most rigorous form of inbreeding which could be applied to such diploids
is sib-mating, which is 33 times slower than selfing a diploid in the rate of
approach to homozygosity. Sib-mating a diploid would be faster than selfing
the tetraploid only if at < 007 (Parsons, 1959), so that no real advantage
would acrue from attempting to inbreed at the diploid level if a self-incom-
patibility system operated.

6. SUMMARY

1. The suitability of several models for the study of quantitative inherit-
ance in autotetraploids is considered.

2. The expectations of generation means are given in terms of the pro-
portions of quadruplex, triplex, duplex, simplex and nulliplex genotypes in
each, and the effect double reduction has on these proportions is described.

3. A scaling test for detecting epistasis in autotetraploids is given.
4. The expectations of several second-degree statistics is given and

problems of estimating parameters from them is discussed.
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