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1. INTRODUCTION

BroMETRICAL genetics, the study of quantitative inheritance, has been almost
exclusively concerned with diploid species and at this level of ploidy has
had outstanding success as a fundamental science and proved a useful adjunct
to plant and animal breeding programmes. There are, however, several
crop plants (e.g. potatoes, coffee, lucerne and several forage grasses) which
are autotetraploids and in which the pattern of inheritance is tetrasomic, not
disomic. The considerable breeding effort which has gone into the improve-
ment of these cultivars has therefore had to proceed without the benefit of
reliable information about the genetical architecture of the metrical traits
under selection. A knowledge of the types of gene action underlying these.
traits should help the efficiency of selection by indicating the mostappropriate
choice of parents and the most suitable method of selection by which to
proceed.

In this paper consideration will be given to the information that can be
obtained from the generations derived from a cross between two autotetra-
ploid homozygous lines. It therefore follows directly on from the work of
Mather and Jinks (1971).

2. NoTATION

With two alleles, 4 and g, at a locus (the maximum when starting with
two homozygous lines) there are three possible genotypes in diploids (44,
Aa, aa) but five in tetraploids. These are

AAAA or A4;  quadruplex
AAAa or Aza  triplex
Adaa or A,a, duplex
Aaaa  or Aaz; simplex
agaa  or a, nulliplex
These must be ascribed algebraic values before the expectations of any

statistics can be calculated. By analogy to diploids (Mather, 1949) we
might have

4y =m+d
Asa = Aya, = Aay; = m+h
a, = m—d

where m is the midparentvalue, but this denies any possibility that the triplex,
duplex and simplex genotypes have different values, as they would if, for
331
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instance, the genetic effect was proportional to the dosage of one allele.
This can be overcome by altering the triplex and simplex values to

Aza = m+Ld+4h

Aay = m—4d+%h
which expresses their intermediate state between the duplex and homozygous
genotypes. With complete dominance, however, the value of the simplex
genotype becomes m when it would be expected to become m+d (= m+4h),

so this scheme has a serious shortcoming. Dessurcaux (1959) attempted to
provide a solution by giving the triplex and simplex genotypes values of

dga = m+2d

Aay = m—Ad
where A=}—3hldifh < d
or A=Lt+ihfdifh < —d

He showed the effect of this was to give the triplex and simplex genotypes
values of

Aga = m+3d+3h

Aay = m—Ld+3h.

The difficulty here is that the parameters are not independent but are defined
in terms of each other.

Secondly, the simplex genotype makes a contribution to the %z parameter
three times that of the triplex genotype which is bound to create ambiguity
in the interpretation of the dominance parameter, especially from the
second-degree statistics where the effect is squared.

On the whole the safest general scheme appears to be to allow the triplex,
duplex and simplex genotypes to take unique values of 4, k, and £, respec-
tively (Mather and Jinks, 1971). Whilst this increases the number of para-
meters it avoids making any assumptions about the relative genetical values
of the genotypes.

During polyploid meiosis sister chromatids may enter the same gamete.
This process, known as double reduction (Mather, 1936), results from recom-
bination between the centromere and distal genes followed by a particular
orientation of the chromosomes on the second metaphase spindle. The
coefficient of double reduction («) represents the proportion of gametes in
which sister genes occur. o has a theoretical maximum limit of £ (0-1428)
and a minimum value of zero (when segregation is ““ chromosomal ”*, i.e. the
genes are transmitted as if they were completely linked to the centromere).
The five genotypes produce gametes in the proportions shown in table 1
(Fisher, 1949).

TasLe 1

Gametic output in an autotetraploid

Gametes
Parental — A —
genotype AA Aa aa Divisor
A, 1 — — 1
Aza 2+ 2 {(1—a) o 4
A,a, 1+2a 4(1-a) 142« 6
Aay o 2 (1—«) 24 4
— 1 1

ag -
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TasLe 2

Expected genotypic proportions of generation means with double reduciion

Quadruplex, d
A

Triplex, 3
AL
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3. FIRST-DEGREE STATISTICS

(a) Generation means

The expected means of 22 generations which can be derived from an
initial cross between two inbred lines are shown in table 2 in the form of
proportions of the five genotypes. The algebraic mean is easily derived by
adding m, the midparent value (= %(P;+P,)) and putting d = } (quad-
ruplex — nulliplex) and Ag, A, and %, equal to the triplex, duplex and simplex
genotypes respectively. The generations are the two parents, the selfing series
from F,—F,, biparental progenies (F, bip), the first and second back-
crosses, the first back-crosses selfed, sibbed (B, bip, B, bip) and crossed to the
F,, and the F; crossed to the parents and F;. The complexity caused by
double reduction is well illustrated by the selfing series. The F, mean not
shown in table 2 is

F, = 4, a4; 5855 (633 + 13820 — 6402 — 43803
+ 2580t — 78’ + 12u8)
Aga, Aag; 5555 (744 — 1200 — 189642 + 20403
—1032a%+ 31205 —48aS)
Aya,; 5555 (1134 —25200 + 392402 — 3204 o3
+ 1548t — 46805 4 72a5).

Terms to the sixth power of « will, of course, be small even when o = 0-14.
Even if segregation is chromosomal the expectations are more complex than
experienced in diploids. Asin diploids, though, there is a symmetry about
the means. For instance in the selfing series, I, bip, and F, xF, the co-
efficient of A, is the same as that of @, and the coefficient of Agza is the same
as that for Aa;. In the first and second back-crosses the coefficient of A4,
is the same as that of A,a,, and the coefficient of 4ja is the same as that of
Aa,, in the appropriate reciprocal cross. Similar correspondences between
reciprocal crosses of the same generation can be seen in table 2.

Unlike diploids, the F, mean does not equal the Fy bip mean, nor in the
back-cross generations is the coefficient of the additive parameter equal to
that of the dominance parameter, though for B, the coefficient of the duplex
genotype equals that of the quadruplex (or the nulliplex for B,). Table 3
shows the proportions of the five genotypes for each generation for « = 0-0
and « = 0-14. It is clear from this that the decline in heterozygosity on
selfing is considerably slower than in diploids.

(b) Effect of double reduction

Whilst table 3 indicates the extreme effects of double reduction it does
not show the effect of double reduction at intermediate values of «. This
is shown in figs. I-3. Only one reciprocal of each generation is shown; it is
a straightforward matter to infer the changes occurring in the other recipro-
cal using table 2. For instance, fig. 2 shows only B,; of the four second
back-crosses, but using table 2 we see that the coefficient of the quadruplex
for By; equals that of the duplex for B, and B,,, and that of the nulliplex
for B,,; the coefficient of the triplex for By; equals that of the triplex for B,;
and of the simplex for B;, and B,,; and the coefficient of the duplex for By,
equals that of the nulliplex for B,,, the duplex for B,, and the quadruplex for
B,;. Similar equivalents allow the changes due to double reduction in all
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TasBLE 3

Genotypic proportions of generation means at limiting values of o

Generation Quadruplex Triplex Duplex Simplex Nulliplex
Py 1-000 — — — —
1-000 — — — —
P, — — — — 1-000
—_ — — — 1-000
F, —— — 1-000 — —
— —_ 1-000 — —
F, 0-028 0-222 0-500 0-222 0-028
0-046 0-245 0-420 0-245 0-046
F, 0-097 0-222 0-361 0-222 0-097
0-135 0-223 0-285 0-223 0-135
F, 0-163 0-191 0-292 0-191 0-163
0-212 0-179 0-219 0-179 0-212
F, bip 0-049 0-247 0-407 0-247 0-049
0-075 0-248 0-354 0-248 0075
F,x P, 0-222 0-556 0-222 — —
0-274 0-451 0-274 — —_—
F,xP, — — 0-222 0-556 0-222
— — 0-274 0-451 0274
F,xF, 0-037 0-241 0-444 0-241 0-037
0-059 0254 0-376 0-254 0-059
B, x F, 0-088 0-426 0-389 0-093 0:005
0-121 0-403 0-346 0-116 0-014
B,xF,; 0-005 0-093 0-389 0-426 0-088
0-014 0-116 0-346 0-403 0-121
B, 0-167 0-667 0-167 —_ —
0-213 0-573 0-213 —_ —_
B, —_ — 0-167 0-667 0-167
—_ — 0-213 0-573 0-213
By 0-528 0-444 0-028 —_ —
0-566 0-369 0-066 - _
By, — —_ 0-528 0-444 0-028
— — 0-566 0-369 0-066
B,, — — 0-028 0-444 0-528
— — 0-066 0-369 0-566
By 0-028 0-444 0-528 — —_
0-066 0-369 0-566 — —
B, self 0-338 0-370 0-250 0-037 0-005
0-387 0-316 0-217 0-069 0-010
B, self 0-005 0-037 0-250 0-370 0-338
0-010 0-069 0217 0-316 0-387
B, bip 0-279 0-469 0-227 0-025 0-001
0-320 0-417 0210 0-048 0-004
B, bip 0-001 0-025 0-227 0-469 0-279
0-004 0-048 0-210 0-417 0-320

Upper line « = 0-0; lower line « = 0-14.
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Fic 1.—Changes in the proportions of the quadruplex (Q), triplex (T), duplex (D), simplex
(S) and nulliplex (N) genotypes with double reduction in the following generations:
F, (top left), F; (top right), F, (bottom left) and F, bip (bottom right).

22 generations to be traced from figs. 1-3. The changes in frequencies of
the genotypes with double reduction are linear or nearly so (where the
regression is curvilinear this is so slight that it does not appear in figs. 1-3),
despite the complex terms involved. This is probably due to cancellation of
terms with opposite sign and to the very small range of values that « may
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Frc. 2.—Changes in the proportions of the quadruplex (Q), triplex (T), duplex (D), simplex
(S) and nulliplex (N) genotypes with double reduction in the following generations:
B, (top left), B,, (top right), B, selfed (bottom left) and B, bip (bottom right).

take; curvature would be more apparent if « could take values up to—say—
unity. As it is, terms with high powers of « make a negligible contribution
to the total; for instance when « = 0-14, «® = 0-002744, so that terms above
o? will have little effect on the regression lines.

Y
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Fic. 3.—Changes in the proportions of the quadruplex (Q), triplex (T), duplex (D), simplex
(S) and nulliplex (N) genotypes with double reduction in the following generations:
B; x F; (top), P; X F, (bottom left) and F; X F, (bottom right).

In five generations double reduction causes the relative frequencies of
genotypes to change. In the F, the relative frequencies of quadruplex and
triplex change at « = 0-07. In B, selfed the relative frequencies of quadruplex
and triplex change at & = 0-04 (in B, selfed it is the nulliplex and simplex
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which change). In B, x F, the relative frequencies of quadruplex and sim-
plex change at « = 008 (in B, xF; it is the nulliplex and triplex which
change). TheF, x F, generation shows little change in the proportions of the
genotypes with double reduction and the triplex and simplex genotypes alter
very littlein the Fyand F, bip generations. With these exceptions double reduc-
tion causes other changes in the proportions of the genotypes which would
have a marked effect on the estimation of parameters from generation means.

In every generation double reduction causes the proportions of quad-
ruplex and/or nulliplex genotypes to increase, and consequently the overall
proportion of heterozygous genotypes (simplex, duplex and triplex) to
decline. This is as expected since double reduction must cause inbreeding
by allowing sister chromatids to enter the same gamete. Table 3 shows the
actual increase in homozygosity over the whole range of « values. Thus in
the F, the increase in homozygosity when o changes from 0-0 to 0-14 is
3-5 per cent., in the Fy it is 7-5 per cent. and in the F, it 1s 9-8 per cent., with
proportional decreases in the amount of heterozygosity. Put another way, on
selfing the F, there is an increase in homozygosity of 13-9 per cent. if « = 0-0
and of 17-9 per cent. if & = 0-14. On selfing the F; homozygosity increases
by 13-1 per cent. if « = 0-0 and 15-4 per cent. if « = 0-14. Similar increases
in homozygosity occur in other generations.

A secondary effect of double reduction may also be noted. With the
exception of the first back-crosses selfed and the second back-crosses, double
reduction increases the proportion of the rarest genotype, and decreases the
proportion of the commonest genotype, in any generation. The effect is to
even up the frequencies of the genotypes in the various generations, and is
most marked in the selfing series, F, bip and the first back-crosses.

(c) Scaling tests

The principle of scaling tests (Mather, 1949) is to detect deviations from
additivity of gene action by combining generation means in such a way that
the expected total is zero if the character is controlled only by additive and
dominance gene action. Non-additivity is usually acribed to epistasis,
though other genetic causes (e.g. residual heterozygosity) could be responsible
for failure of the scaling tests.

Apart from the A, B and C scaling tests of Mather (1949), and the various
associated tests based on the formula ¥, = 1(P,+P,) + 1F,—,, scaling tests
have been developed by Opsahl (1956), van der Veen (1959) and Hill (1966).
Using the general notation described in section 2 of this paper, none of these
scaling tests is satisfactory; with only additive and dominance gene action
the expected totals are not zero. Nor will any of these tests work if the three
heterozygous genotypes are pooled, i.e. by +hy+hy = k.

Using the special definitions that dza = m+3d+%h and Aa; = m—3d
+ 14, six tests are satisfactory even with double reduction. These tests are

A =P, +F, 2B,
B = P,+F,—~2B, of Mather (1949)
B, = 3131"']?1_4'311
By = P2"‘3F‘1_‘1'B12
By, = 3P, +F, —4B,,
B, = P,+3F,—4B,, of Hill (1966)
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Using the special definition of Dessureaux (1959), three of these tests—the
A, B,; and B ,—are satisfactory even with double reduction. Nevertheless,
the reliability of these scaling tests depends on the definition of the parameters
being satisfactory, which is open to doubt.

It has been possible to devise two scaling tests which are satisfactory
using the general definition. These tests (which also hold for disomic
inheritance) are

B,—F, 4+ 2B, ~ 2B, = 0
P,—F +2B,,—2B,, = 0.
The variances of these tests are
V3, 4+ Vg, +4V3;+4VE; and
V3,+ Vg, +4Vg, +4V5, respectively.

These two scaling tests are unaffected by the degree of double reduction
The scaling test of Cavalli (1952) can, of course, be adapted to any generation
and any type of inheritance. It would therefore be quite satisfactory when
applied to tetraploid data.

4. SECOND-DEGREE STATISTICS

Using the notation that d = }(4y—a,), hy = Aag, hy = Asa, and A,
= Aja, the expectations of second-degree statistics may be calculated. Thus
the F, variance is

(1 +4a+4a?)d? 445 (14 + 100 — 2402 + 1603 — 1602) (2 +42) + 5
(9 — 1602+ 3203 — 16a) A3 + 55 ( — 6+ 20 + 1202 — 2403 — 1604) (A,
+ hohg) + g5 (— 8 — 16 +24 02 + 3203 — 320) Ay g

Similarly, the variance of B, is
75 (5 +8o—4a?) (d2+ h2) + §(2 + 20— 4a?) (h2 —hyhy — dhg) — g (1 —4o-1-402) dhy,

Whilst all second-degree statistics could be calculated taking double
reduction into account there would appear little to be gained for the extra
labour required. The results given here have therefore been based on the
special case where o = 0-0 (i.e. segregation is chromosomal). Many statistics
can be derived from the 22 generations listed earlier in this paper, but atten-
tion here will be restricted to statistics obtainable from the selfing series,
F, bip, the first and second back-crosses and the first back-crosses selfed.
The genetical expectations of these statistics are given in table 4. Statistics
such as the covariance of B,, and B, selfed can, of course, only be obtained
by using common parents; where fertility is low this may not be possible.
Ten parameters need to be estimated though if all the 2 and dk terms are
summed this can be reduced to three, in which case the assumption that all
the terms in 4 are equal (h, = hy, = h3) has been made, and a possible error
introduced.

Apart from the F, the coefficients of the parameters in the sclfing series
are very complex and involve terms in dh, though since the coefficients of dh
are of the same size but opposite sign these disappear from the model on
summation of the parameters. However if &3 is not equal in effect to 4,
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genic effects of dh terms will still exist in the data though they are not
allowed for in the model. The sign of dk is positive for the mean variances
and negative for the variance of means and covariance statistics. As with the
mean of the F, and F, bip the variance of the F, does not equal the total
F, bip variance (VF, bip+VF, bip). This is expected since in polyploids
a single round of random mating is not sufficient to bring a population into
equilibrium (Bennet, 1954).

The first and second back-cross statistics do not use all ten parameters
simultaneously, so that separation of their effects should be easier. It may
be noted that here, as in diploids, the coefficient of 4% is equal to that of
Y. hshy so that additive and dominance effects may be estimated with equal
kK%
p]recision.

The variances may be estimated by either of two procedures.

(a) By using the analysis of variance the phenotypic variation of each
generation (except the F, and first back-crosses) may be partitioned into
that within families and that between families. The two mean squares have
expectations of:

Between families M.S. = o}, +naf
Within families M.S. = o2

where 7 is the number of individuals per family. The two ¢%’s may thus be
separated and ascribed the genetical expectations shown in table 4. Assum-
ing single plant randomisation, the expectation of the within family variance,
o2, also contains an environmental component, E,, which is estimated as the
mean variance within parental and F, lines.

(b) By direct estimation of the phenotypic variances within and between
families for each generation. For the latter statistic the data used are the

. . .
family means so its expectation is - of the between families mean square in

. .1 - . .
the analysis of variance (i.e. Zof” + of). Whereas the within family variance
is identical when estimated by either procedure, the expectation of the be-
- . . 1
tween families variance estimated by method (4) is incremented by - of the

within families variance and this includes E;. Therefore when method (4)
is used to estimate the between families variance of any generation a correc-
tion needs to be made before the genetical expectation in table 4 is ascribed.
Ifindividual plant randomisation is not used, the expectations of thevariances
between families also contain an environmental component, E,, but this is
zero with single plant randomisation.

The main difficulty in estimating parameters from the variances is likely
to be the small, but variable, coefficients involved. If we consider as an
example the variance of second back-cross family means we see that the
coefficients of 4%, ) Ay and ) dh; are some 15 times greater for By, and

7] B
B,, than for B, and B,,. In the case of the mean variances of second back-
crosses the coefficients of the summed parameters (d2, Y hikj, Y, dhi) of

7 i_
B, and B,, are about eight times those of B, and B,,. So that for Vg, and
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V., the coefficients of the genetical parameters are about a fifth (41/216)
that of E; and for Vg, and Vg,, they are about a fortieth (5/216) that of
E,. There is clearly a possibility that, in practice, the genetical variation
will be ““ drowned *’ by the environmental variation and that the estimates
of the genetical parameters will be imprecise. This does not apply to co-
variances which have no environmental component in their expectations

(Mather, 1949).

5. DiscussioNn

Scaling tests provide unambiguous qualitative information as to the
presence or absence of epistasis (Perkins and Jinks, 1970). It is therefore
possible to assess the adequacy of a simple additive and dominance model
before estimating any parameters. If the scaling tests described in this paper
show epistasis to be absent, the components of generation means may be
estimated using the method of Cavalli (1952). The components are m, the
midparent value, d, %, h, and %; and their products with « to various powers.
Excluding the F, mean there are potentially 21 such parameters, and if the
F, mean is included there are 27 parameters (because here we need to specify
abhy, abhy, etc.). Since we have only 22 generation means from which to
estimate these parameters the Fy must obviously be excluded. The model to
be fitted can be varied in complexity until a satisfactory fit is obtained. Thus
at first the model might only contain the parameters m, d, k), h, and h;. If
the fit is unsatisfactory (i.e. the x? is too large) the parameters ad, ah,, ah,
and ahy may be added. Parameters with successively higher powers of « may
continue to be added until a satisfactory fit is obtained. A description of this
approach applied to diploids is given by Jinks and Perkins (1969) for the
estimation of linked epistatic parameters from generations means. The
linearity of the regression lines in figs. 1-3 suggest that it would be unnecessary
to fit parameters with « raised to a power greater than 1. Nine parameters
would therefore have to be fitted and so ten (or more) generation means may
be adequate for the purpose of estimating them. Comparison of the relative
sizes of A, &, and &3 may indicate that one of the special definitions of these
parameters described in section 2 of this paper may be appropriate in which
case a simpler model may be fitted.

Ten parameters are specified in the expectations of second-degree statis-
tics, and hence at least ten statistics are required for their estimation. These
parameters have been shown to have relatively small coefficients and hence
their estimation will be subject to a large error. If the analysis of generation
means suggests that 4,, 4, and /3 can be combined into a single parameter the
number of second-degree parameters is reduced from ten to three and the
coefficients are larger, though still small in comparison with that of the
environmental component. Consequently the analysis will be easier and
more accurate if such simplification is justified. Since covariances do not
have an environmental component in their expectations they are potentially
more useful than variances. A common drawback to the use of covariances
is that they frequently involve the use of two non-contemporary generations,
e.g. W F,/F;, and therefore the measurements must be made in different
seasons causing the statistics to be distorted by genotype-environment inter-
actions. Fortunately several polyploids (e.g. potatoes) can be propagated
vegetatively so the parent may be measured at the same time, and under the
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same conditions, as its progeny. Even so, it would seem that in tetraploids
first-degree statistics are likely to be a more fruitful source of information
than second-degree statistics.

Polyploids are frequently found to be highly heterozygous and difficulty
may be experienced in obtaining homozygous lines. Selfing an autotetra-
ploid to-obtain inbred lines is slower than selfing a diploid (see table 3); to
attain the same degree of homozygosity as a diploid takes 3-8 times as long
with no double reduction and 2-9 times as long if « = 0-14 (Parsons, 1959).
Seven or eight generations of selfing are required to make an initially hetero-
zygous diploid 99 per cent. homozygous (Fisher, 1949). Parsons (1959)
shows that tetraploids require 27 or 28 generations of selfing to achieve the
same degree of homozygosity if « = 0; if « = 0-14, 20 generations of selfing
will suffice. It would clearly be worth while to reduce the tetraploid to the
diploid level, inbreed for several generations and then double the number of
chromosomes using colchicine, provided it was technically feasible. How-
ever, other difficulties may occur. For instance, diploid potatoes have a self-
incompatibility system which is not expressed in the tetraploid forms. The
most rigorous form of inbreeding which could be applied to such diploids
is sib-mating, which is 3-3 times slower than selfing a diploid in the rate of
approach to homozygosity. Sib-mating a diploid would be faster than selfing
the tetraploid only if «<0-07 {(Parsons, 1959), so that no real advantage
would acrue from attempting to inbreed at the diploid level if a self-incom-
patibility system operated.

6. SUMMARY

1. The suitability of several models for the study of quantitative inherit-
ance in autotetraploids is considered.

2. The expectations of generation means are given in terms of the pro-
portions of quadruplex, triplex, duplex, simplex and nulliplex genotypes in
each, and the effect double reduction has on these proportions is described.

3. A scaling test for detecting epistasis in autotetraploids is given.

4. The expectations of several second-degree statistics is given and
problems of estimating parameters from them is discussed.
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