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SUMMARY

Data are presented on the frequency of close inbreeding and on inbreeding
depression in a Great Tit population in Wytham Wood near Oxford. A
theoretical distribution is fitted to data on the dispersal of young birds, and a
model is constructed to predict the amount of inbreeding expected in a large,
uniform habitat in terms of the dispersal distribution and of the breeding
structure of the population.

1. INTRODUCTION

For the past 25 years the Edward Grey Institute of Field Ornithology has
pursued a population study of the Great Tit (Parus major) in Wytham Wood
near Oxford. Many nest-boxes have been put up, each of which is regularly
visited in the breeding season. The clutch size and the number of young
fledged are thus known for each breeding pair. The mother is also caught
and ringed when she is sitting on the eggs, and the young are ringed about
a fortnight after hatching. Since 1964 the more difficult task of catching
and ringing the father, who does not sit on the eggs, has been accomplished
in many cases. For further information on this study the reader is referred
to Perrins (1965) and Lack (1966). A comparable Dutch study is described
by Kluijver (1951). The purpose of this paper is to use the genealogical
information available from 1964 onwards to estimate the amount of close
inbreeding in this population, and then to construct a theoretical model
which will predict the amount of inbreeding in a large, uniform habitat
in terms of the dispersal of young birds from their birthplaces and of the age
structure of the breeding population. Some limited data on inbreeding
depression will also be presented.

2. THE FREQUENCY OF INBREEDING

There were 397 matings between 1964 and 1970 for which both parents
were caught. (Pairs breeding together in two or more years were counted
only once.) A pedigree was constructed for each of these matings and was
traced back as far as it could be taken. As a result, 7 consanguineous
matings were discovered, composed as follows:

3 brother-sister matings, the sibs belonging to the same brood in each
case,

2 mother-son matings,

1 aunt-nephew mating, a female being mated to the son of her sister
from the same brood as herself,

1 greataunt-grandnephew mating, a female being mated to the grandson
of her full brother born the year before her.
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The coefficient of inbreeding in the population calculated from the
above figures is

F=(3x}+2x}+1x1+1x4)397 = 0-0036.

This can be regarded only as a lower limit to the truc amount of close
inbreeding since many of the pedigrees are very incomplete.  There are
two reasons for the incompleteness of the pedigrees.  Firstly, many birds
had not been ringed as nestlings but were first ringed either as breeding
birds or through bcing trapped in the winter, so that their ancestry is
unknown. It seems likely that ncarly all of these birds, which will be
called immigrants as opposed to residents, were born outside the study area,
though not necessarily far outside. Of the 397 matings analysed, 101 were
between two resident birds, 113 between a resident male and an immigrant
female, 64 bctween an immigrant male and a resident female, and 119
between two immigrant birds. Thus the frequency of immigrant birds is 46
per cent. in males and 58 per cent. in females; the higher incidence in
females is accounted for by their greater tendency to disperse, as shown in
Section 4. The sccond rcason for the incompleteness of the pedigrees is
that the male parent may not have been caught; the male is almost ncver
known for matings before 1964 and in only about two-thirds of the matings
after 1964.

Woe must now consider the probable effect of the incompleteness of the
pedigrees on the ascertainment of consanguineous matings. It scems likely
that most if not all of the brother-sister matings have been found. In all
the matings between two resident birds it is known for certain whether
or not they are sibs.  Since Great Tits usually breed cither in the same place
or very necar in successive years, it is very unlikely that a mating between a
resident and an immigrant bird is a brother-sister mating. It is also rather
unlikely that a mating between two immigrant birds should be a brother-
sister mating, since such matings arc usually between birds that have moved
only a short distance from their birthplace. For similar rcasons it is likely
that all the mother-son matings have been found. For if a mother mated
with her son in the study arca, then she must almost certainly have raised
that son in the study area, so that he is a native bird. In all matings of a
native male with any type of female it is known for certain whether or not
that femalc is his mother By the same argument father-daughter matings
will almost certainly occur among the matings with a native female, but they
will only be ascertained if that female’s father has been caught; there might
therefore be onc or two undctected father-daughter matings, but on the
other hand onc would expect fewer father-daughter than mother-son matings
since young females disperse further than young males. If we combine
together the closest relatives (brother-sister and parent-child) it can be
concluded that the truc frequency of this type of mating does not greatly
cxceed the obscrved frequency of five pairs, which gives an incidence of
1} per cent. Ascertainment in the case of less close relatives is likely to be
very incomplete, and no reliable conclusions can be drawn about them.

Kluijver (1951) found two cases of brother-sister mating in his study of
the Great Tit in Holland; the total number of matings examined is not
clear, but his study was of about the same size as the present one. The
most detailed investigation of inbreeding in other birds is that of Richdale
(1957) or the ycllow-eyed Penguin (Aegadyptes antipodes); out of a total of
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244 matings he found 3 brother-sister, | halfbrother-halfsister, and 3 second-
cousin matings. In the Song-Sparrow (Melospiza melodia) Nice (1937)
found 1 brother-sister mating, whereas Kendeigh (1941) found no cascs of
inbreeding in his study of the Housc Wren (Troglodytes aédon). The total
number of matings examined is not stated exactly in either case, but is
probably smaller than in the present study.

In mammals, a considerably higher amount of inbrecding has been
discovered by Howard (1949) in the Prairie Deermouse (Peromyscus manicu-
latus bairdir). Howard found 10 instances of presumed closc inbreeding
(8 fathcr-daughter matings and 2 between sibs) and 7 additional instances
where close inbreeding possibly occurred (2 between father and daughter,
2 between mother and son, and 3 between brother and sister). He con-
cludes that ** at least 4 to 10 per cent. of the litters observed were produced
by parent-offspring matings or matings between sibs . The reason for
this high amount of inbreeding is probabty the low degree of dispersal
of young animals; only 31 per cent. of the malcs and 15 per cent. of the
females moved tnore than 500 feet (150 metres) from their birthplaces to
breed. The excess of father-daughter over mother-son matings can be
explained by the higher degree of dispersal in the young males than in the
young females of this spccics.

3. INBREEDING DEPRESSION

The five pairs with a coefficient of consanguity of } (3 brother-sister and
2 mother-son pairs) laid eight clutches with a total of 68 eggs, of which 42
hatched and then fledged successfully. The fledging success in these pairs
is thus 62 per cent. and the fledging mortality 38 per cent. (This mortality
includes both failure of the egg to hatch and nestling mortality.) Onc of
these clutches, however, with scven eggs of which only one hatched and
dicd before fledging, had been attacked by a Great Spotted Woodpecker
(Dendrocopos major) boring a hole through the nestbox at about the time
when the eggs were due to hatch.  Although none of the eggs or young was
taken, it is possible that the failure of the eggs to hatch was due to disturb-
ance of the mother. If this clutch is excluded, the fledging mortality
becomes 31 per cent.  The fledging mortality in the whole population in the
period 1964-70, including as beforc both failure to hatch and nestling
mortality but excluding predated and second or rclaid clutches, was 175
per cent.

Although the mortality in inbred birds is based on a very small number
of obscrvations, the above figures arc suggestive of an increase in the
mortality due to inbreeding. If we take these figures at thcir face value,
and assume that —In § = A+ BF, where § is the probability of survival
among birds with inbreeding coefficient F (Morton, Crow and Muller,
1956), the cocfficients 4 and B can be estimated as 4 = 0-19 and B = 116
(including the woodpcckered clutch) or 0-72 (excluding the woodpeckered
clutch). Since B provides a lower cstimate of the number of lethal equival-
ents per gamcte, it can be concluded that there arc about 2 lethal cquivalents
per zygote, that is to say per bird. This estimate is in good agrccment with
estimatcs of the cffect of inbrceding on mortality in Drosaphila (Dobzhansky,
1970) and in man (Cavalli-Sforza and Bodmer, 1970). In the Japanese
Quail (Coturnix coturnix japonica) Sittmann, Abplanalp and Frascr (1966)



316 M. G. BULMEK

have obtained an estimate of 3-4 lethal equivalents per bird, based on hatch-
ability and mortality in the first five weeks of life, which corresponds
approximately with fledging mortality considered here.

We turn now to the effect of inbreeding on survival after fledging and on
subsequent fertility. Of the 42 inbred birds which fledged successfully,
none was recorded as breeding birds in subsequent years. In the general
population, on the other hand, over the period 1964-70, 7-8 per cent. of the
fledglings were subsequently recorded as breeding birds, so that the expected
number of recoveries from 42 fledglings is 3-3. If we assume that the actual
number of recoveries follows a Poisson distribution, then the probability
that no birds will be recovered is ¢33 = 0-037. There is thus a significant de-
ficiency in the number of breeding recoveries from the inbred birds, although
the numbers involved are clearly too small to allow an estimate of the size of
the deficiency. The deficiency may be due either to increased mortality after
fledging or to decreased fertility in the inbred birds. Sittmann et al. (1966)
found a marked reduction in fertility among inbred Japanese Quail. The
same phenomenon is well-known in Drosophila (Dobzhansky, 1970).

4. DISPERSAL OF YOUNG BIRDS

The most important factor determining the amount of inbreeding is the
dispersal of young birds from their birthplaces to their first breeding-places;
as already mentioned adult birds tend to stay in the same.breeding-place
or very near from year to year as long as they live. The histograms of these
dispersal distances for male and female birds are shown in figs. 1 and 2;
the main deficiency of these data is that they do not include birds which have
moved out of the study area, but this will not greatly affect the shape of the
distribution near the origin which is of most importance in determining the
amount of inbreeding.

Malécot (1967) has described a family of theoretical distributions,
called K distributions, which are very useful for fitting to dispersal data.
A K distribution with parameters 4 and b is defined by the density function

h(lr)? Kooy ()

s by b) = 20; 0.
f(f, h, ) 901 F(b) , 1205 A b> (l)
T'he cumulative probability function is
F " (Ar)°Ky (hr)
= d = l —_— -,
) Lf(u) ! 20-11(b) @)

In these formulae r is the dispersal distance, 4 is a scale parameter, b is a
parameter determining the shape of the distribution, and K, is the modified
Bessel function of the second kind of order v. When 0 <4 < } the distribution
is infinite at 7 = 0, when b = } it is an exponential distribution, and when
b> 1% itisan ordinary unimodal distribution. When b becomes large and the
scale parameter, £, is suitably adjusted, the distribution tends to the limiting
form

glr) = 5 e, 3)

which is the distribution expected if the dispersal, when expressed in
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Fic. 1l.—Dispersal from birthplace to first breeding-place in 240 male birds. Mean = 702
metres, median = 475 metres, variance/mean? = 0-78. The superimposed curve is a K

distribution with 4 = 1/440, b = 1.
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Fig. 2.—Dispersal from birthplace to first breeding-place in 171 female birds. Mean = 864
metres, median = 775 metres, variance/mean? = 0-49. The superimposed curve is a K

distribution with 4 = 1/440, b = 14.
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Cartesian coordinates, x and y, follows a bivariate normal distribution with
equal variances, V, for x and » and with no correlation between them.

The family of K distributions is thus useful for fitting to dispersal data
which are more skew than the moderately skew standard distribution given
in equation 3 based on the assumption of an underlying bivariate normal
distribution; such data are often found to be highly skew. A simple model
giving rise to K distributions is that dispersal is a two-dimensional diffusion
process (random walk), but that the time during which dispersal occurs is
also a random variable following a gamma distribution with parameter &
(or a x2 distribution with 2b degrees of freedom). The case when b = 1,
which corresponds to an exponential distribution for the dispersal time, has
been considered by Broadbent and Kendall (1953) and by Pielou (1969).
The first two moments about the origin of the K distribution with para-
meters £ and b are

E(ry = 2I'(b+ H)I'(1}) R I’(b)

E(r) = 4bJh. )

These formulae can be used to fit a K distribution by the method of moments.
The most valuable property of the K distributions is that they can be con-
voluted in the following way. Suppose that movement occurs from 4 to B
according to a K distribution with parameters 4; and by, and that a further
movement occurs from B to C according to another, independent K dis-
tribution with parameters %, and b,; if the direction of movement is random
in both cases, and if furthermore the scale parameters of the two distributions,
hy and iy, have the same value, &, then the distance between 4 and C will
also follow a K distribution with scale parameter 4 and with b = (b;+b,).
This reproductive property allows us to follow the effect of dispersal over any
number of generations.

In order to take advantage of this reproductive property it is desirable,
if possible, to fit K distributions with the same scale parameter to the data
of figs. | and 2. It is also desirable that the parameter b should be an
integer or a half-integer since the Bessel functions are extensively tabulated
in these cases; when b is a half-integer the Bessel functions can also be ex-
pressed in terms of elementary functions. Values of the parameters which
meet these requirements and which also predict the first two moments of the
distributions fairly closely are & = 1/440 for both distributions and b = 1
for males and 1} for females. It will be seen from figs. 1 and 2 that these K
distributions are in good agreement with the observed data. The female
distribution, with b = 11, is, apart from the scale factor, a ¥? distribution
with 4 degrees of freedom.

The reproductive property of the K distribution depends on the as-
sumptions that dispersal occurs over a large uniform habitat. Neither of
these assumptions is fulfilled in the present case since Wytham Wood is
isolated from other woodland by urban and agricultural land, and since it is
itself subdivided with a large park in the middle {see Perrins, 1965 for a map
of the study area). Itis therefore of interest to see whether the distributions
of dispersal distances can be added together in the way described above.
Table 1 shows the mean distance between (a) the breeding-places of sisters
born in the same year, () the breeding-places of brother-sister pairs born
in the same year, and (¢) the birthplaces of mates. If the distributions are
additive, then the first distribution should be a £ distribution with 2 = 1/440
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and b = 3, while the second and third distributions should both be K
distributions with 2 = 1/440 and 4 = 2. The mean distance is considerably
smaller than its predicted value in all three cases; this result can most
plausibly be attributed to the limited size and broken nature of the habitat.

TaBLE 1

Mean distances (in metres) between breeding-places of sibs and birthplaces of mates

Mean distance Predicted
Distance measured No. of pairs +standard error mean
Breeding-places of sisters 110 968 + 66 1296
Breeding-places of brother-sister pairs 88 875459 1173
Brithplaces of mates 98 935480 1173

5. A MODEL OF INBREEDING IN A LARGE, UNIFORM HABITAT

The purpose of this section is to construct a model to predict the amount
of inbreeding expected in a large, uniform habitat. It will be assumed
that the dispersal of young birds follows a K distribution as shown in figs. 1
and 2, and that these distributions can be convoluted over several generations
in the way described in the previous section. The results obtained will not
be applicable to a semi-isolated, broken habitat such as Wytham Wood, but
they should be valid in a large forest and may thus be representative of the
conditions prevailing in primaeval woodland prior to disturbance by man.

In addition to the pattern of dispersal it is also necessary to specify the
breeding structure of the population. Detailed information on this subject
is being published elsewhere (Bulmer and Perrins, 1973), but the following
simplified assumptions will be made here:

1. The annual adult mortality is 50 per cent. independent both of age
and sex. (In fact, mortality is slightly higher in females than in males but
this complication will be ignored.) The age distribution in the adult
population is thus a geometric distribution, the probability of a bird of age
x being ()%, x>1.

2. All adult birds breed. The pair-bond, once formed, is broken only by
death. A bird which is unpaired at the beginning of the breeding season,
either because it is a first-year bird or because its previous partner has died,
pairs at random, as far as age is concerned, among unpaired birds of the
opposite sex. If ¢(x, v) denotes the conditional probability that a bird
known to be of age x is mated to a bird of age v, it follows from elementary
probability considerations that

¢(1,1) =%
$(l,0) = §x ()% 022 ()

since all the first-year birds but only half of the older birds are unpaired
at the beginning of the breeding season, and that, for x >2,

$(x 1) = §4(1, 1) = 4§
¢(r,0) = dp(x—Lo—1)+44(L,0) = d$(x—L o—1)+§x ()", 022 (6)
since there is a probability of one-half that the pair-bond will have been

broken by the death of the other partner. The unconditional probability
that a mating will be between a bird of age x and a bird of age v is

Pix o) = (3)*¢(x 0). (7)
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3. Each breeding pair has one clutch each year, but about one-third of
these clutches is lost by predation. (This was the average predation rate
in Wytham Wood, but it is perhaps rather higher than is typical in hole-
nesting species; see, for example, Lack (1954). Predated clutches may be
relaid, but it seems reasonable to ignore these relaid clutches in view of their
high mortality.) To maintain a stable population size each pair must
raise on average one offspring which survives to reproduce in the following
year, so that there must be on average 1-5 surviving young from each non-
predated clutch. It will be assumed that the number of surviving young
from non-predated clutches follows a Poisson distribution with mean 1-5.
It follows that an individual will have on average 1-5 sibs of the same age
and 0-25!#! full sibs who differ in age by z years (z # 0), since the probability
that both parents are alive z years later (or by symmetry z years previously)
is 0-25%. By a similar argument the average number of half-sibs who differ

c?-? B
® @

‘.
gA

Frc. 3.—Pedigree of second cousins once removed.

in age by z years is 2(0-5!¢1 —0-25!¢l). The average number of full and half-
sibs who differ in age by z years will be denoted by Sp(z) and Sy(z) re-
spectively. These averages include all sibs who survived to breed, regardless
of whether they are at any particular time alive or dead.

Consider now the pedigree shown in fig. 3 in which B and C are full
sibs so that A and D are second cousins once removed. The sexes of 4 and D,
but not of the other individuals, are specified. There are three links between
4 and B, and two links between C and D; in a general pedigree these
numbers will be denoted by 7 and j. If the female 4 is now of age x, the
probability that B was of age y when 4 was born, and is therefore now of
age x -y, is given by the convolution of ¢ geometric distributions, and is thus

Po) = (I w2 (®)

This probability must be multiplied by 2¢, since there are 2¢ individuals
like B. The average number of full sibs of B who are now of age x+y+ 2
is Sp(z). Finally, for each sib the average number of living direct descendants
like D, who are of age x +y+ 2 —u = 0,15 20-1P;(u)(4)*~!. Hence the average
number of living relatives of type D of age v given that 4 is of age x is

R(x, o) = 2"=1(3)° L Pi(5)Sp(2)P; (1), (9)
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where n = 1+ and where the summation is to be taken over y>i, u>j,
and with z such that x+y+z—u = v. For half-sibs Sp(z) must of course
be replaced by Sg(z). This expression must be doubled when ¢ # j if we
do not wish to distinguish whether the female occurs in the long or the short
chain of the pedigree.

Let us now suppose for the moment that there are N breeding pairs in
the population and that mating is panmictic. Since there are N/2° males of
age v in the population, the conditional probability that a mating between a
female of age x and a male of age v will be a consanguineous mating of the
type being considered is 2°R(x, v)/N. The probability of a mating between
birds of these ages is given by i(x, v} defined in equation 7. Hence the
overall frequency of this type of mating is given by «/N, where

o = 27 Pi(5)Sp(2)P;(u)f(x, v), (10)
the summation being taken over x>1, >, u>j, and over all z such that

TaBLE 2
Predicted frequency of consanguineous matings related through full or half-sibs

o Predicted frequency
(o A ) 4 A -
Relationship Full Half Full Half N
Sibs 0-80 0-20 0-0028 0-0007 288
Uncle-niece or aunt-nephew 0-91 1-18 0-0017 0-0023 524
First cousins 1-67 1-05 0-0022 0-0014 762
Greatuncle-grandniece or greataunt-
grandnephew 0-61 1-41 0-0008 0-0018 762
First cousins once removed 3-85 3-92 0-0039 0-0039 1000
Second cousins 4-80 402 0-0039 0-0032 1241
Greatgreatuncle-greatgrandniece or
greatgreataunt-greatgrandnephew 0-40 1-34 0-0004 0-0013 1000
First cousins twice removed 3-65 5-38 0-0029 0-0043 1241
Second cousins once removed 13-96 14-18 0-0094 0-0096 1480
Third cousins 15-70 14-81 0-0091 0-0086 1720

x+y+z—u=0v>21. (The provisos contained in the last two sentences of
the preceeding paragraph also apply.) o« may be interpreted as the average
number of marriageable relatives of a given type, and is tabulated in
table 2.

To incorporate the effect of dispersal into the model let us suppose that
there are m males and n—m females among the intermediate birds linking
4 and D; the probability of this is (n )2‘”. The probability distribution,

m
M(r), of the distance between the birthplaces of 4 and D will be a K dis-
tribution with 2 = 1/440 and b = (3n—m)/2. Hence the average number of
living relatives like D of age v given that 4 is of age x (the number of inter-
mediate males being specified) whose birthplace is at a distance between
r and 7+ dr from the birthplace of 4 is

(;) 2-nR(x, o) M(r)dr, (11)
while the number of males of age v whose birthplace is at a distance between

r and 7+ dr from the birthplace of 4 is (3)*27r 8 dr, where § is the density of
breeding pairs per square metre. Given that a mating has occurred between
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individuals whose birthplaces lie at a distance within this interval, and that
the ages of the birds are x and v respectively, the probability that the birds
are related in the way specified (the number of intermediate males also
being specified) is

(”) 2-nR(x, 1) M(r)2%/2mrS. (12)
m
Averaging over x and v with probability (x, v) the probability becomes
o (”) 2-nM(r) |2r8. (13)
m

The probability that the distance between the birthplace of mates lies
between r and r+dr is f(r)dr, where f(r) is the density function of a K dis-
tribution with 2 = 1/440 and & = 2{. Hence the total probability of a
consanguineous mating of this type (the number of intermediate males

still being fixed) is
* (”) 9-n jwM dr. (14)

g5 \m) * ), T 1

The integral in the above expression is a special case of a standard integral
quoted in Erdélyi (1954, Vol. 2, p. 334, equation 48) and takes the simple
form

r AM dr = B2/(3n+3—m). (15)

Summing over m, the predicted frequency of this type of consanguineous
mating is therefore
n
ah?2-" n m

. 16
278 =, (B3n+3-—-m) (16)

When 7 # j this expression must as before be doubled if we do not wish to
distinguish between a female on the short or long arm of the chain. The
constant /4% is equal to 1/4402, while 6, the density of breeding pairs, was
0-79/hectare or 0-79 x 10-%/square metre in Wytham Wood, so that
h?2m8 = 1/96.

The above argument breaks down in the case of a brother-sister mating,
but the result remains valid. This can be shown by writing M(r) for the
dispersal distribution of a male from birthplace to breeding-place, and
f(r) for the corresponding dispersal distribution of his sister; the argument
of the preceding two paragraphs now remains valid with appropriate
change of terminology, so that the predicted frequency of brother-sister
matings is «/96 x 3.

The predicted frequencies calculated from equation 16 are shown in
table 2. The effect of dispersal can be seen from the effective number of
breeding pairs, N, shown in the last column, which has been calculated by
equating «/N, the frequency expected in a panmictic population with N
breeding pairs, to the predicted frequency. It must be stressed that these
predicted frequencies are only applicable in a large, uniform habitat, and
that the frequencies in a broken, semi-isolated habitat like Wytham Wood
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may be considerably higher; thus the observed frequency of brother-sister
matings in Wytham Wood was 3/397 = 0-008 which is almost three times the
predicted frequency. This is to be expected from the facts about the
distribution of the distance between the breeding-places of brother-sister
pairs discussed at the end of the previous section. In fact, the observed
distance between the breeding-places of brothers and sisters is approximately
a K distribution with £ = 1/440 but with 4 = 1} instead of 2}; the effect
of this can be mimicked by supposing that dispersal distances in brothers
and sisters can be convoluted but that the dispersal distribution has § = §
for males and & = 1 for females. If we follow the argument of the preceding
paragraph with these values, we find that the predicted frequency of brother-
sister matings is «/96 = 0-0083, which is in very good agreement with. the
observed frequency.

Consider now the pedigree shown in fig. 4 in which 4 is the great-
granddaughter of D. The sexes of 4 and D, but not of the other individuals

Fic. 4.—Pedigree of great-granddaughter and great-grandfather.

are specified. There are three links between 4 and D; in a general pedigree
of this kind it will be supposed that there are » links, so that 4 has 27-1
ancestors like D of specified sex. In a general pedigree it will also be supposed
that B is the parent of 4, and that C is the child of D. If the female 4 is
now of age x, the probability that C was of age » when 4 was born and hence
is now of age x+y is P,_,(y). The chance that D was of age z when C was
born and hence is now of age x +y+ 2z = v is {})% and the chance that D is
still alive is (1)®*¥ since he was known to be alive when C was born. Hence
the average number of living ancestors like D of age v given that 4 is of age

x is
Rix,0) = 2730 8 Pos(s) (17)

By the same argument as before we find that
a =201 P, (y)3f(x, v), (18)

the summation being taken over x > 1, y >n—1, v 2x+y+1. This expression
must be doubled if we do not wish to distinguish between, for example, a
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grandfather-granddaughter and a grandmother-grandson mating. Values
of a, which have the same interpretation as before, are shown in table 3.

TaBLE 3
Predicted frequency of consanguineous matings related by direct descent
Predicted
Relationship o frequency N

Father-daughter 0-26 0-0025 104
Mother-son 0-26 0-0070 37
Grandparent-grandchild 0-35 0-0013 270
Greatgrandparent-greatgrandchild 0-23 0-0004 575
Greatgreatgrandparent-

greatgreatgrandchild 0-15 0-0002 750

To incorporate the effect of disperasl, let us write M(r) for the distribution
of the distance between the breeding-places of B and D, which is a K dis-
tribution with 4 = 1/440 and 6 = [3(n—1) —m]/2, where m is the number of
males in the connecting chain, and f{r) for the distribution of the dispersal
distance of 4 from birthplace to breeding-place, which is a K distribution
with & = 1/440 and with b = 1 if 4 is male and 6 = 1} if 4 is female. Since
4 can only be mated to D if 4 returns to the breeding place of D, it follows by
the same argument as before that the chance that 4 will be mated to D is

n—1
wh201-n -1 m )

, (19)
278 2 3(n—1)+m+e

where e = 0 or | according as 4 is male or female.

This argument breaks down for a parent-child mating, but an approxi-
mate answer can be found by multiplying the probability that the parent is
available for mating, which is equal to «, by the probability that the child

moves a distance less than 1/V/'78, since each bird may be thought of as
holding a circular territory with area 1/8. The latter probability may be
found from equation 2 and is equal to 0-027 for males and 0-0095 for females.
The predicted frequencies of father-daughter and mother-son matings are
thus 0-0025 and 0-0070 respectively; in 397 matings one would expect 1
father-daughter and 3 mother-son matings, which are in reasonable agree-
ment with the observed figures (0 and 2 respectively). Predicted frequencies
for other matings calculated from equation 19 are given in table 3, although
one would not expect them to be applicable to Wytham Wood since, apart
from the parent-child matings just considered, they assume that K distribu-
tions can be convoluted over two or more generations.
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