

THE HERITABILITY OF PLASMA CHOLESTEROL CONCENTRATION IN THE RABBIT

D. C. K. ROBERTS and C. E. WEST

Department of Experimental Pathology, John Curtin School of Medical Research,
The Australian National University, P.O. Box 334,
Canberra City, A.C.T., 2601, Australia

Received 18.ii.74

SUMMARY

The heritability of the plasma total cholesterol concentration in rabbits has been estimated by the paternal half-sibling method. In female rabbits, the heritability is 62 ± 38.8 per cent ($h^2 \pm S.E.$) indicating that this trait is highly heritable. In male rabbits, the heritability is 22 ± 20.2 per cent. The large error involved makes it difficult to state if the trait is heritable in male rabbits.

1. INTRODUCTION

THE inheritance of plasma cholesterol concentration has been reported in chickens, mice, beef cattle and rats (Estep, Fanguy and Ferguson, 1969; Stufflebeam and Lasley, 1969; Imai and Matsumura, 1973; Weibust, 1973). In a previous publication from this laboratory the heritability of dietary induced hypercholesterolaemia in the rabbit has been demonstrated (Roberts, West, Redgrave and Smith, 1974). In that paper, considerable variation in plasma cholesterol concentration was shown for both male and female rabbits in the non-cholesterol-fed state. Part of this variation in males but not females was attributable to a decrease in plasma cholesterol concentration with age. Some of the variation could be genetically determined. Accurate records of the parents, age and litter size of these animals had been kept and thus it has been possible to analyse the data for heritability by the paternal half-sibling method. In this paper the heritability of plasma cholesterol concentration in the non cholesterol-fed rabbit is reported.

2. MATERIAL AND METHODS

(i) *Animals and diets*

Data were collected from 267 male and 219 female offspring produced by 20 sires and 59 dams over a 2-year period. The rabbits were from a randomly outbred closed colony maintained in the Animal Breeding Establishment of the Australian National University. Details of the diet, which contained no added cholesterol, have been reported earlier (Roberts *et al.*, 1974).

All rabbits shared a common environment. Matings took place on the same day each week (Tuesday) and the young were usually born during the quiet of the weekend. The offspring were weaned at 6 weeks, caged up to four to a cage and allowed access to feed and water at all times. The temperature was maintained at $20^{\circ}\text{--}22^{\circ}$ C. throughout the year.

(ii) *Estimation of plasma cholesterol concentration*

At approximately 3-month intervals the plasma cholesterol concentrations of all offspring between 6 and 20 weeks of age were determined.

TABLE 1
Mean plasma cholesterol concentration of offspring

Dam	Plasma cholesterol concentration*		Dam	Plasma cholesterol concentration*		Dam	Plasma cholesterol concentration*	
(Sire)	Male†	Female	(Sire)	Male†	Female	(Sire)	Male†	Female
(Bl 1)			(Br 13)	36 ± 3.6 (2)	—	(Re 5)	83 ± 18.5 (3)	146 (1)
853	42 ± 2.8 (2)	94 ± 15.3 (3)	878	—	—	871	67 ± 15.7 (6)	98 ± 9.7 (9)
897	70 ± 25.9 (9)	55 ± 5.0 (12)	(Gr 5)	66 ± 13.6 (3)	86 ± 14.1 (3)	918	—	—
907	—	51 ± 0.8 (3)	834	65 ± 2.1 (6)	—	923	62 (1)	—
920	48 ± 1.2 (4)	—	944	41 ± 2.2 (2)	—	929	73 ± 4.9 (3)	86 ± 15.6 (2)
(Bl 3)			954	—	—	965	—	82 ± 22.6 (3)
889	47 ± 1.2 (2)	—	968	—	217 ± 50.9 (4)	965	—	86 ± 22.6 (3)
897	74 ± 5.1 (3)	—	971	—	98 ± 1.5 (2)	(Re 6)	—	—
970	63 ± 11.6 (3)	94 ± 13.5 (2)	978	70 ± 8.7 (3)	86 ± 16.3 (3)	963	75 ± 10.4 (4)	150 ± 37.4 (4)
916	—	91 (1)	(Gr 6)	83 ± 17.6 (4)	—	970	—	97 ± 7.9 (3)
925	78 ± 7.6 (3)	90 ± 12.0 (2)	865	—	—	981	62 (1)	167 (1)
931	59 ± 2.2 (5)	105 ± 10.0 (2)	882	34 ± 4.5 (6)	70 ± 32.0 (2)	(Sm 2)	—	—
945	70 (1)	81 (1)	887	75 ± 3.9 (4)	—	839	88 (1)	93 ± 8.5 (2)
(Bl 4)			(Gr 7)	—	—	849	56 ± 8.1 (3)	81 ± 12.8 (3)
877	55 (1)	—	871	—	104 ± 16.7 (5)	894	—	—
894	48 (1)	53 ± 4.4 (4)	903	—	94 ± 21.8 (3)	908	63 ± 45.0 (2)	—
934	—	68 ± 20.5 (2)	923	67 ± 3.1 (4)	123 ± 13.8 (4)	912	58 ± 3.9 (10)‡	—
(Bl 5)			929	106 (1)	55 (1)	(Sm 3)	—	—
894	—	95 ± 13.0 (2)	932	88 ± 11.5 (2)	105 ± 11.1 (3)	897	87 ± 12.1 (2)	81 ± 11.4 (3)
912	—	44 ± 4.8 (4)	937	—	70 ± 16.5 (2)	907	80 ± 9.8 (4)	96 ± 13.0 (2)
(Br 5)			940	—	64 ± 0.5 (2)	920	58 ± 12.6 (2)	138 ± 66.0 (2)
894	59 ± 6.6 (5)	—	(Gr 8)	—	—	925	62 ± 2.3 (7)	70 ± 4.0 (2)
912	46 ± 4.1 (5)	—	907	71 ± 1.0 (2)	44 ± 4.9 (3)	945	86 ± 13.0 (2)	111 ± 5.0 (2)
(Br 8)			922	59 ± 3.3 (4)	82 ± 9.1 (4)	973	—	88 ± 13.9 (3)
873	50 ± 13.7 (3)	—	925	98 ± 15.4 (3)	—	Wh 3)	—	—
896	69 ± 16.0 (2)	—	931	83 ± 6.0 (10)‡	—	859	79 ± 37.0 (2)	—
898	50 ± 4.0 (2)	—	(Gr 9)	—	—	865	32 (1)	—
905	44 (1)	—	859	65 ± 25.0 (3)	42 (1)	874	88 ± 13.4 (5)	155 ± 21.5 (2)
924	71 ± 2.6 (3)	—	874	71 ± 4.3 (4)	81 ± 7.0 (5)	878	54 (1)	—
936	34 (1)	—	878	56 ± 5.7 (7)‡	89 ± 10.0 (4)	886	113 ± 15.1 (10)‡	—
938	—	88 ± 14.7 (3)	886	—	104 ± 10.3 (5)	887	—	113 ± 16.1 (4)
954	79 ± 7.1 (5)	127 ± 21.1 (3)	887	74 ± 6.9 (9)‡	91 ± 6.5 (3)	913	58 ± 9.9 (7)	107 ± 9.1 (8)‡
968	89 ± 3.5 (2)	91 ± 16.0 (2)	913	61 ± 8.8 (4)	67 ± 2.0 (2)	928	66 ± 31.0 (2)	—
(Br 9)			919	—	86 ± 9.5 (2)	933	56 ± 5.4 (5)	48 ± 7.5 (3)
873	—	50 ± 15.2 (2)	928	—	68 ± 7.5 (2)	(Wh 4)	—	—
938	79 (1)	42 ± 3.6 (6)	(Gr 11)	—	68 ± 7.5 (2)	871	104 (1)	131 ± 8.0 (3)
956	—	63 (1)	894	51 ± 8.6 (2)	81 ± 8.0 (3)	912	—	90 ± 10.1 (4)
962	70 ± 9.8 (5)	81 ± 3.0 (2)	963	—	67 ± 2.5 (2)	918	74 ± 13.9 (2)	105 ± 11.6 (6)
967	72 ± 7.1 (7)	68 ± 7.9 (3)	965	98 ± 13.0 (2)	68 ± 13.0 (2)	932	101 (1)	183 ± 10.1 (3)
977	96 ± 7.7 (3)	119 ± 7.5 (5)	969	—	75 (1)	937	82 ± 20.6 (5)	191 ± 22.0 (3)
						939	124 ± 11.2 (6)	98 (1)

* Plasma cholesterol concentration of offspring: mean ± S.E. mg/dl (n).

† Due to the decrease in plasma cholesterol with age previously reported (Roberts *et al.*, 1974), the male values have been adjusted to their mean age (10.77 weeks) using the regression equation:

$$\log Y = 2.0807 - 0.02445X$$

where X = age in weeks and Y = plasma cholesterol concentration as mg/dl.

‡ Data for two litters.

Samples of blood (3 ml) were removed from the marginal ear vein into tubes containing 0.05 ml of 0.4 M EDTA, pH 7.4 as anticoagulant and the plasma was separated from the chilled blood by centrifugation. The cholesterol was extracted by the method of Mann (1961) and estimated using the σ -phthaldialdehyde colour reagent of Zlatkis and Zak (1969).

(iii) *Statistical analysis and estimation of heritability*

As parental values of plasma cholesterol concentration were not obtained, heritability was estimated by the paternal half-sibling method described by Falconer (1963). Briefly, this involves an analysis of variance leading to the estimation of three components of variance, attributable to sires (between half-sib families) to dams (between dams within sires) and to individuals (within dams). These values are equated to the expected composition of the variances which are dependent on the number of offspring per litter

and per half-sib family. From these equations the correlation between half-sib families can be obtained and this, multiplied by four, provides an estimate of the heritability.

3. RESULTS AND DISCUSSION

The mean plasma cholesterol concentration of the offspring of the various half-sibling families is shown in table 1. These data have been

TABLE 2
Components of variance of offspring plasma cholesterol concentration

Source	Sum of squares	d.f.	Mean square	V.R.	Expected mean square†
MALES					
Between litters	91,008	74	1230	1.60*	—
Between sires	32,728	18	1818	1.74	$W + 4.488D + 13.822S$
Within sires (between dams)	58,280	56	1041	—	$W + 3.234D$
Within litters	147,322	192	767	—	W
Total	236,330	266			
FEMALES					
Between litters	265,639	72	3689	4.25***	—
Between sires	112,476	17	6616	2.40**	$W + 3.505D + 11.973S$
Within sires (between dams)	153,163	55	2785	—	$W + 2.829D$
Within litters	126,771	146	868	—	W
Total	392,410	218			

† Expected mean square required for sib analysis of heritability where:

W = component of variance attributable to individuals within full sib families.

D = component of variance attributable to dams.

S = component of variance attributable to sires.

The coefficients of D and S are calculated by the method of Falconer (1963) for unequal family size.

* $P < 0.05$. ** $P < 0.01$. *** $P < 0.001$.

published previously in a different form showing that female plasma cholesterol concentration is higher than male and that male but not female plasma cholesterol concentration decreases with age (Roberts *et al.*, 1974). For these reasons the females were analysed separately from the males and the male values were adjusted to their mean age (see equation in legend to table 1). As there were so few observations for the ages 15-20 weeks the regression was calculated on ages 6-14 weeks only (mean age 10.77 weeks) and those animals older than this were excluded from the calculation of male heritability and not reported in table 1. The components of variance of offspring plasma cholesterol concentration for males and females are shown in table 2. Variation between litters is significantly greater than within litters for both male ($F_{74, 192} = 1.60$, $P < 0.05$) and female ($F_{72, 146} = 4.25$, $P < 0.001$) offspring indicating that the dam is contributing to the variation. This contribution could be both genetic and environmental. Variation between sires is significantly greater than within sires for females ($F_{17, 55} = 2.40$, $P < 0.01$) but not for males ($F_{18, 56} = 1.74$, N.S.). Thus,

the sire is not having a significant effect on the male offspring plasma cholesterol concentration. This is reflected in the estimate of the heritability for males and females shown in table 3. The male heritability is low and has a large standard error with respect to the estimate of heritability. In females the heritability of plasma cholesterol concentration is 62 ± 38.8 per cent ($h^2 \pm S.E.$).

Additive inheritance has been shown in man (Schaeffer, Adlersberg and Steinberg, 1958), rats (Imai and Matsumura, 1973), mice (Bruell, 1963;

TABLE 3
Heritability of plasma cholesterol concentration in rabbits

	Components of variance†	
	Male	Female
<i>W</i>	767	868
<i>D</i>	85	678
<i>S</i>	49	282
heritability		
$h^2 \pm S.E.$	0.22 ± 0.202	0.62 ± 0.388

† See legend to table 2 for explanation of *W*, *D* and *S*.

Weibust, 1973) and beef cattle (Stufflebean and Lasley, 1969). In a previous study of the inheritance of dietary induced hypercholesterolaemia in rabbits (Roberts *et al.*, 1974) it was suggested that the mode of inheritance was additive. Sufficient data are not present in this study to make any conclusions concerning the mode of inheritance of plasma cholesterol concentration in the normal rabbit. Heritability estimates of 26 per cent in male chickens (Estep *et al.*, 1969), 50 per cent in male and female mice (Weibust, 1973) and 73 per cent in male mice (Eapen, Goswami and Pillai, 1971), and 80 per cent in beef cattle (Stufflebean and Lasley, 1969) have been reported. In this paper the heritability in female rabbits is shown to be 62 ± 38.8 per cent. The low value for the male heritability (22 ± 20.2 per cent) is difficult to interpret because of the large standard error. It is possible that this particular trait is not heritable in male rabbits. Certainly, the analysis of variance shows that there is no significant sire effect on the male offspring (table 2). However, in view of the large error of estimation, the experimental design may not have been appropriate for the assessment of heritability in male rabbits. Clearly, further experiments are necessary to establish whether the plasma cholesterol concentration is a heritable trait in the male rabbit.

Acknowledgments.—We wish to acknowledge the help given by Dr J. B. Smith in the provision of facilities in the Animal Breeding Establishment. Mr O. Bryant, Miss Suzanne M. Smith and Mrs Barbara Tan gave skilful technical assistance.

4. REFERENCES

BRUELL, J. H. 1963. Additive inheritance of serum cholesterol level in mice. *Science*, **142**, 1664-1666.
 EAPEN, K. J., GOSWAMI, O. B., AND PILLAI, S. K. 1971. Inheritance of serum cholesterol and its relation to body weight in white mice. *J. Genetics*, **60**, 222-229.
 ESTEP, G. D., FANGUY, R. C., AND FERGUSON, T. M. 1969. The effect of age and heredity upon serum cholesterol levels in chickens. *Poultry Sci.*, **48**, 1908-1911.

FALCONER, D. S. 1963. Quantitative inheritance. In *Methodology in Mammalian Genetics*. pp. 193-216, W. J. Burdette, Ed. Holden-Day Inc., San Francisco.

IMAI, Y., AND MATSUMURA, H. 1973. Genetic studies on induced and spontaneous hypercholesterolaemia in rats. *Atherosclerosis*, 18, 59-64.

MANN, G. V. 1961. A method for measurement of cholesterol in blood serum. *Clin. Chem.*, 7, 275-284.

ROBERTS, D. C. K., WEST, C. E., REDGRAVE, T. G., AND SMITH, J. B. 1974. Plasma cholesterol concentration in normal and cholesterol-fed rabbits; its variation and heritability. *Atherosclerosis*, 19, 369-380.

SCHAEFFER, L. E., ADLERSBERG, D., AND STEINBERG, A. G. 1958. Heredity, environment and serum cholesterol. *Circulation*, 17, 537-542.

STUFFLEBEAN, C. E., AND LASLEY, C. E. 1969. Hereditary basis of serum cholesterol level in beef cattle. *J. Hered.*, 60, 61-62.

WEIBUST, R. S. 1973. Inheritance of plasma cholesterol levels in mice. *Genetics*, 73, 303-312.

ZLATKIS, A., AND ZAK, B. 1969. Study of a new cholesterol reagent. *Analyt. Biochem.*, 29, 143-148