Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Nuclear DNA amounts in populations of Picea and Pinus species
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 1976

Nuclear DNA amounts in populations of Picea and Pinus species

  • S B Teoh1 &
  • H Rees1 

Heredity volume 36, pages 123–137 (1976)Cite this article

  • 547 Accesses

  • 72 Citations

  • Metrics details

Summary

There are numerous reports of a very wide range of variation in nuclear DNA amounts among populations within species of the Pinaceae, including Picea glauca, the White Spruce. Our survey of 26 provenances, covering almost the entire range of White Spruce in North America showed, in contrast, no significant variation in nuclear DNA amount within the species except for minor fluctuations due to B chromosomes. The DNA estimates, throughout, fall within the range of 37·4 to 40·4 × 10−12 g. The areas of the 2C nuclei measured at G1 from 12 provenances were also highly uniform. In addition, there was no significant variation in the chromosome volume between and within provenances. Both facts reinforce the conclusion that nuclear DNA amounts within the species are constant.

There are no detectable differences in the nuclear DNA content between Picea glauca and P. engelmannii. In Pinus contorta as in P. glauca, nuclear areas and DNA amounts do not vary significantly between or within provenances and the mean DNA value of 2C nuclei is 40·34 × 10−12 g.

White Spruce in North America alone ranges over 3000 miles of longitude and some 1000 miles of latitude. The constancy of the nuclear DNA amounts among provenances of White Spruce and of the other species growing in widely differing environments is both surprising and impressive. It provides further testimony to the pronounced inertia to quantitative DNA change within species.

Similar content being viewed by others

Nucleosome-bound NR5A2 structure reveals pioneer factor mechanism by DNA minor groove anchor competition

Article Open access 26 February 2024

Genetic control of tracheid properties in Norway spruce wood

Article Open access 22 October 2020

Reducing costs and shortening the cetyltrimethylammonium bromide (CTAB) method to improve DNA extraction efficiency from wintersweet and some other plants

Article Open access 18 April 2025

Article PDF

References

  • Baetcke, K P, Sparrow, A H, Nauman, C H, and Schwemmer, S S. 1967. The relationship of DNA content to nuclear and chromosome volumes and to radiosensitivity (LD50). Proc Natn Acad Sci USA, 58, 533–540.

    Article  CAS  Google Scholar 

  • Borvin, A, Vendrely, R, and Vendrely, C. 1948. L'Acide désoxyribonucléique du noyau cellulaire, dépositaire des caractéres héréditaires; arguments d'ordre analytique. CR Acad Sci Paris, 226, 1061–1063.

    Google Scholar 

  • Decosse, J J, and Aiello, N. 1966. Feulgen hydrolysis: effect of acid and temperature. J Histochem Cytochem, 14, 601–604.

    Article  CAS  PubMed  Google Scholar 

  • Deitch, A D, Wagner, D, and Richart, R M. 1968. Conditions influencing the intensity of the Feulgen reaction. J Histochem Cystochem, 16, 371–379.

    Article  CAS  Google Scholar 

  • Dhir, N K, and Miksche, J P. 1974. Intraspecific variation of nuclear DNA content in Pinus resinosa Ait. Can J Genet Cytol, 16, 77–83.

    Article  Google Scholar 

  • Edwards, G A, Endrizzi, J E, and Stein, R. 1974. Genome DNA content and chromosome organisation in Gossypium. Chromosoma, 47, 309–326.

    Article  Google Scholar 

  • El-Lakany, M H, and Sziklai, O. 1971. Intraspecific variation in nuclear characteristics of Douglas-Fir. Advan Front Plant Sci, 28, 363–378.

    CAS  Google Scholar 

  • Flavell, R B, and Smith, D B. 1974. Variation in nucleolar organiser rRNA gene multiplicity in wheat and rye. Chromosoma, 47, 327–334.

    Article  CAS  Google Scholar 

  • Fox, D P. 1969a. Some characteristics of the cold hydrolysis technique for staining plant tissues by the Feulgen reaction. J Histochem Cytochem, 17, 266–272.

    Article  CAS  PubMed  Google Scholar 

  • Fox, D P. 1969b. The relationship between DNA value and chromosome volume in the Coleopteran genus Dermestes. Chromosoma, 27, 130–144.

    Article  CAS  PubMed  Google Scholar 

  • Mergen, F, and Thielges, B A. 1967. Intraspecific variation in nuclear volume in four conifers. Evolution, 21, 720–724.

    Article  PubMed  Google Scholar 

  • Miksche, J P. 1968. Quantitative study of intraspecific variation of DNA per cell in Picea glauca and Pinus banksiana. Can J Genet Cytol, 10, 590–600.

    Article  Google Scholar 

  • Miksche, J P. 1971. Intraspecific variation of DNA per cell between Picea sitchensis (Bong.) Carr. provenances. Chromosoma, 32, 343–352.

    Article  CAS  PubMed  Google Scholar 

  • Mirsky, A E, and Ris, H. 1949. Variable and constant components of chromosomes. Nature, 163, 666–667.

    Article  CAS  PubMed  Google Scholar 

  • Rees, H. 1972. DNA in higher plants. Brookhaven Symp Biol, 23, 394–418.

    CAS  PubMed  Google Scholar 

  • Rees, H. 1974. B Chromosomes. Sci Prog, 61, 535–554.

    CAS  PubMed  Google Scholar 

  • Ritossa, F M, and Spiegelman, S. 1965. Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of Drosophila melanogaster. Proc Natn Acad Sci USA, 53, 737–745.

    Article  CAS  Google Scholar 

  • Roche, L. 1969. A genecological study of the genus Picea in British Columbia. New Phytol, 68, 505–554.

    Article  Google Scholar 

  • Rothfels, K, Sexsmith, E, Heimburger, M, and Krause, M O. 1966. Chromosome Size and DNA content of species of Anemone and related genera (Ranunculaceae). Chromosoma, 20, 54–74.

    Article  Google Scholar 

  • Sparrow, A H, Price, H J, and Underbrink, A G. 1972. A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. Brookhaven Symp Biol, 23, 451–494.

    CAS  PubMed  Google Scholar 

  • Swift, H. 1950a. The desoxyribose nucleic acid content of animal nuclei. Physiol Zoo, 23, 169–198.

    Article  CAS  Google Scholar 

  • Swift, H. 1950b. The constancy of desoxyribose nucleic acid in plant nuclei. Proc Natn Acad Sci USA, 36, 643–654.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Agricultural Botany, University College of Wales, Penglais, Aberystwyth

    S B Teoh & H Rees

Authors
  1. S B Teoh
    View author publications

    Search author on:PubMed Google Scholar

  2. H Rees
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teoh, S., Rees, H. Nuclear DNA amounts in populations of Picea and Pinus species. Heredity 36, 123–137 (1976). https://doi.org/10.1038/hdy.1976.12

Download citation

  • Received: 26 September 1975

  • Issue date: 01 February 1976

  • DOI: https://doi.org/10.1038/hdy.1976.12

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Heterogeneity of the internal transcribed spacer 1 (ITS1) inTulipa (Liliaceae)

    • G. Booy
    • J. Van der Schoot
    • B. Vosman

    Plant Systematics and Evolution (2000)

  • Genome size variation inCajanus cajan (Fabaceae): A reconsideration

    • J. Greilhuber
    • R. Obermayer

    Plant Systematics and Evolution (1998)

  • Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms

    • B. J. Davies
    • I. E. W. O'Brien
    • B. G. Murray

    Plant Systematics and Evolution (1997)

  • Nuclear DNA content of Pinus sylvestris (L.) as determined by laser flow cytometry

    • Jari P. T. Valkonen
    • Markku Nygren
    • Leena Mannonen

    Genetica (1994)

  • Cytogenetic studies in the genus Zea

    • C. M. Tito
    • L. Poggio
    • C. A. Naranjo

    Theoretical and Applied Genetics (1991)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited