Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
DNA contents and cell number in relation to seed size in the genus Vicia
Download PDF
Download PDF
  • Original Article
  • Published: 01 August 1977

DNA contents and cell number in relation to seed size in the genus Vicia

  • D Roy Davies1 

Heredity volume 39, pages 153–163 (1977)Cite this article

  • 1610 Accesses

  • 39 Citations

  • Metrics details

Summary

The extent of variation in cell mass, and in the size of the cell population of cotyledons has been examined to determine their relative roles in the evolution of variation in seed weight within the genus Vicia. In the 12 species examined there were highly significant correlations between seed weight and cotyledon cell number, and between seed weight and mean cell mass. The extremes differed by a factor of 625 fold in dry seed weight; of this variation, most (140 fold) was attributable to variation in the size of the cell population and only a 4.47-fold change was due to differences in cell mass. The cotyledon cells of all the species, irrespective of their seed weight showed very high levels of replication of their DNA. The implications of these data in terms of the evolution of seed mass in Vicia is considered. There was a constant relationship between cell mass and DNA amount per cell for all species, irrespective of the basic genome size, extent of DNA replication or of the information content of the genome. The basis of this relationship, and its evolutionary implication, is considered.

Similar content being viewed by others

The giant diploid faba genome unlocks variation in a global protein crop

Article Open access 08 March 2023

Genome sequencing reveals evidence of adaptive variation in the genus Zea

Article 20 October 2022

Paternal imprinting of dosage-effect defective1 contributes to seed weight xenia in maize

Article Open access 13 September 2022

Article PDF

References

  • Bennett, M D. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proc Roy Soc Lond, B, 181, 109–135.

    Article  CAS  Google Scholar 

  • Bennett, M D, and Smith, J B, 1976. Nuclear DNA amounts in angiosperms. Phil Trans Roy Soc Lond, 274, 227–274.

    Article  CAS  Google Scholar 

  • Callan, H G. 1972. Replication of DNA in the chromosomes of eukaryotes. Proc Roy Soc Lond, B, 181, 19–41.

    Article  CAS  Google Scholar 

  • Callan, H G. 1973. DNA replication in the chromosomes of eukaryotes. Cold Spring Harbour Symposium in (Quantitative Biology, Vol. XXXVII, pp. 195–203.

    Google Scholar 

  • Chooi, W Y. 1971a. Variation in nuclear DNA content in the genus Vicia. Genetics, 68, 195–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chooi, W Y. 1971b. Comparison of the DNA of six Vicia species by the method of DNA-DNA hybridization. Genetics, 68, 213–230.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cullis, C A. 1975. Ribosomal RNA cistron number in Nicotiana species and derived haploids. Chromosoma (Berl.,), 50, 435–441.

    Article  CAS  Google Scholar 

  • Cullis, C A. 1976. Chromatin-bound DNA-dependent RNA polymerase in developing pea cotyledons. Planta (Berl.), 131, 293–298.

    Article  CAS  PubMed  Google Scholar 

  • Cullis, C A, and Davies, D R. 1975. Ribosomal DNA amounts in Pisum sativum. Genetics, 81, 485–492.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, D R. 1975. Studies of seed development in Pisum sativum. I. Seed size in reciprocal crosses. Planta (Berl.), 124, 297–302.

    Article  CAS  PubMed  Google Scholar 

  • Davies, D R. 1976. DNA and RNA contents in relation to cell and seed weight in Pisum sativum. Plant Sci Lett, 7, 17–25.

    Article  CAS  Google Scholar 

  • Davies, D R, and Brewster, V. 1975. Studies of seed development in Pisum sativum. II. Ribosomal RNA contents in reciprocal crosses. Planta (Berl.), 124, 303–309.

    Article  CAS  Google Scholar 

  • Dure, L S. 1975. Seed formation. Ann Rev Plant Physiol, 26, 259–278.

    Article  CAS  Google Scholar 

  • Evans, G M, Rees, H, Snell, C L, and Sun, S. 1972. The relationship between nuclear DNA amount and the duration of the mitotic cycle. Chromosomes Today (ed. C. D. Darlington and K. R. Lewis), 3, 24–31.

    CAS  Google Scholar 

  • Evans, L T. 1975. The physiological basis of crop yield. In Crop Physiology, ed L. T. Evans, pp. 327–355. Cambridge University Press.

    Google Scholar 

  • Evans, L T, and Dunstone, R L. 1970. Some physiological aspects of evolution in wheat. Aust J biol Sci, 23, 725–741.

    Article  Google Scholar 

  • Fantes, P A, Grant, W D, Pritchard, R H, Sudbery, P E, and Wheals, A E. 1975. The regulation of cell size and the control of mitosis. J Theor Biol, 50, 213–244.

    Article  CAS  PubMed  Google Scholar 

  • Harper, J L, Lovell, P H, and Moore, J R. 1970. The shapes and sizes of seeds. Ann Rev Ecology and Systematics, 1, 327–356.

    Article  Google Scholar 

  • Ingle, J, Timmis, J N, and Gore, J R. 1976. Quantitative regulation of gene activity. In Perspectives in Experimental Biology—vol. 2, Botany, ed. N. Sunderland, pp. 273–281.

    Google Scholar 

  • Jones, R N, and Brown, L M. 1976. Chromosome evolution and DNA variation in Crepis. Heredity, 36, 91–104.

    Article  Google Scholar 

  • Maher, E P, and Fox, D P. 1973. Multiplicity of ribosomal RNA genes in Vicia species with different nuclear DNA contents. Nature New Biol, 245, 170–172.

    Article  CAS  PubMed  Google Scholar 

  • Martin, P G. 1966. Variation in the amounts of nucleic acids in the cells of different species of higher plants. Exp Cell Res, 44, 84–94.

    Article  CAS  PubMed  Google Scholar 

  • Millerd, A, and Spencer, D. 1974. Changes in RNA-synthesizing activity and template activity in nuclei from cotyledons of developing pea seeds. Aust J Plant Physiol, 1, 331–341.

    CAS  Google Scholar 

  • Millerd, A, and Whitfield, P R. 1973. Deoxyribonucleic acid and ribonucleic acid synthesis during the cell expansion phase of cotyledon development in Vicia faba L. Plant Physiol, 51, 1005–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees, H. 1972. DNA in higher plants. In Evolution of Genetic Systems. Brookhaven Symposium in Biology, No. 23, ed. H. H. Smith, pp. 394–418.

  • Rees, H, Cameron, F M, Hazarika, M H, and Jones, G H. 1966. Nuclear variation between diploid Angiosperms. Nature, Lond, 211, 828–830.

    Article  CAS  Google Scholar 

  • Rees, H, and Jones, R N. 1972. The origin of the wide species variation in nuclear DNA contents.Int Rev Cytol, 32, 53–92.

    Article  CAS  PubMed  Google Scholar 

  • Rijven, A H G C, and Wardlaw, I F. 1966. A method for the determination of cell number in plant tissues, Exp Cell Res, 41, 324–328.

    Article  CAS  PubMed  Google Scholar 

  • Salisbury, E. 1974. Seed size and mass in relation to environment. Proc Roy Soc, B, 186, 83–88.

    Google Scholar 

  • Scharpe, A, and Van Parijs, R. 1973. The formation of polyploid cells in ripening cotyledons of Pisum sativum L. in relation to ribosome and protein synthesis. J exp Bot, 24, 216–222.

    Article  CAS  Google Scholar 

  • Schneider, W C. 1957. Determination of nucleic acids in tissue by Pentose analysis. Methods in Enzymol, III, 680–691.

    Article  Google Scholar 

  • Smith, D L. 1973. Nucleic acid, protein and starch synthesis in developing cotyledons of Pisum arvense L. Ann Bot (Lond.), 37, 795–804.

    Article  CAS  Google Scholar 

  • Van't Hof, J. 1975. DNA fiber replication in chromosomes of a higher plant (Pisum sativum). Exp Cell Res, 93, 95–104.

    Article  CAS  PubMed  Google Scholar 

  • Van't Hof, J, and Sparrow, A H. 1963. A relationship between DNA content, nuclear volume and minimum mitotic cycle time. Proc Nat Acad Sci, 49, 897–902.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, D H, Ozbun, J L, and Munger, H M. 1972. Physiological genetics of crop yield. Adv in Agronomy, 24, 97–146.

    Article  Google Scholar 

  • Watson, D J. 1952. The physiological basis of variation in yield. Adv in Agronomy, 4, 101–145.

    Article  Google Scholar 

  • Weiss, R R, Kukora, J R, and Adams, J. 1975. The relationship between enzyme activity, cell geometry, and fitness in Saccharomyces cerevisiae. Proc Nat Acad Sci USA, 72, 794–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ycas, M, Sugita, M, and Bensam, A. 1965. A model of cell size regulation. J Theoret Biol, 9, 444–470.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. John Innes Institute, Colney Lane, Norwich, NR4 7UH

    D Roy Davies

Authors
  1. D Roy Davies
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, D. DNA contents and cell number in relation to seed size in the genus Vicia. Heredity 39, 153–163 (1977). https://doi.org/10.1038/hdy.1977.52

Download citation

  • Received: 17 January 1977

  • Issue date: 01 August 1977

  • DOI: https://doi.org/10.1038/hdy.1977.52

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Inferring catabolism through analysis of amino acid balance in Vicia faba L. seedlings

    • Thiago Batista Moreira
    • Thomas Christopher Rhys Williams

    Brazilian Journal of Botany (2021)

  • Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe–microbe interaction networks in plant leaves

    • Julian Regalado
    • Derek S Lundberg
    • Detlef Weigel

    The ISME Journal (2020)

  • Cytotaxonomic studies of Eastern MediterraneanVicia species (Leguminosae)

    • N. Maxted
    • M. A. Callimassia
    • M. D. Bennett

    Plant Systematics and Evolution (1991)

  • Variation in the ribosomal RNA genes among individuals of Vicia faba

    • Scott O. Rogers
    • Sandra Honda
    • Arnold J. Bendich

    Plant Molecular Biology (1986)

  • Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues

    • Scott O. Rogers
    • Arnold J. Bendich

    Plant Molecular Biology (1985)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited