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SUMMARY

The relationship between heterozygosity and the probability of monomorphisin
is evaluated under several competing hypotheses. It is shown that such a
relationship alone has very little discriminatory power in distinguishing
between the alternative hypotheses unless the selection pressure is quite strong.

1. INTRODUCTION

THE number of statistics used to describe the genetic variability within a
population has grown considerably in the last decade. One major objective
of these new statistics has been to test the validity of the competing hypotheses
regarding the maintenance of genetic polymorphism in natural populations.
It has been recently demonstrated that a large number of these tests have
very little statistical power in discriminating between the neutral mutation
hypothesis and some particular selection hypothesis (Chakraborty et al.,
1977). While these test procedures may not resolve the existing controversy,
they can be explored systematically to see whether a particular hypothesis
gives an inconsistent fit to a large body of data. With this objective in
mind, investigations are in progress involving different test statistics using
the same body of data collected over several hundreds of organisms (e.g.
see Nei 81 al., 1976; Fuerst et al., 1977; Charkraborty et al., 1978).

In one test procedure Kimura and Ohta (1971) studied the relationship
between the heterozygosity and the probability of monomorphism under the
assumption that the number of possible neutral allelic types is infinite.
Several empirical studies (e.g. Kimura and Obta, 1971; Selander, 1976;
Fuerst et al., 1977) indicate that the data from natural populations are in
accordance with the above expected relationship. This, however, does not
constitute a proof of the neutral mutation hypothesis, since the same data
might also be explained by some combination of selective genes (Nei, 1975;
Fuerst et al., 1977). It is of some importance, therefore, to evaluate the
discriminatory power of this test statistic using several alternative models
of explaining the genetic variability in populations. The models considered
here are: (1) neutral mutations with constant mutation rates (Kimura,
1968), (2) neutral mutations with varying mutation rates (Nei et al., 1976),
(3) stepwise mutation model (Ohta and Kimura, 1973), (4) symmetric
overdominant mutations (Kimura and Crow, 1964; Watterson, 1977), and
(5) sequentially advantageous mutations (Chakraborty et al., 1977).

2. HETEROZYG0SITY AND PROBABJLITY OF MONOMORPHISM

(1) Jfeutral mutation model wit/i constant mutation rate

A locus is usually said to be monomorphic if the total frequency of all
variant "alleles is q or less, where q is a small positive fraction. Arbitrarily,
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q can be taken as O01 or 005. In other words, a locus is essentially mono-
morphic if the frequency of the allele that happens to predominate in the
population is greater than 1 — q. Thus, if the frequency distribution of an
allelic frequency x at equilibrium is given by (x), then the probability of
monomorphism, Pm, for an infinite allele model is given by

= urn k f (1)
k-+cij J1—q

(Kimura and Ohta, 1971).
Under the neutral mutation theory, m Is then given by

Pm = q4Nu (2)
where J%Ig is the effective size of the population at steady state and u is the
mutation rate per locus. In such a population the heterozygosity (the
frequency of heterozygotes per locus or the expected frequency of hetero-
zygous loci for an individual) has an expectation

H= 4Neu (3)
1 + 4Nu

Thus, for a neutral model H is related to 1m by

Pm = qH/(l_II) (4)
(Kimura and Ohta, 1971). The plot of (4) when Pm is on a log scale is
linear with a slope of log q which is shown in fig. 1 (solid line).

(ü) J'feutral mutation model with varying mutation rate

In deriving (4), where H represents the expected heterozygosity over
all loci, it is assumed that the mutation rate has to be the same for all Joci.
As is shown elsewhere, if the neutral mutation rate follows a gamma dis-
tribution (an assumption for which empirical evidence is presented in
Nei et al. (1976), with a coefficient of variation 1, the probability of mono-
morphism 1m and the expected heterozygosity H are given by

Pm = (1—Mlogq)1 (5)
and

H = 1—/3eE1(fl) (6)

where M 4ü, i being the average mutation rate, E1(fl) = 5 (e_t/t)dt
and = 1/M (Nei et al., 1976).

The relationship between m and Hf(l —H) as determined by (5) and
(6) are also presented in fig. 1 (broken line). Comparison of (4), (5) and
(6) shows that although in all of these formulations the alleles are assumed
to be selectively neutral, the expected relationships are at least numerically
distinguishable. Such differences, however, may not be discernible in a
given data set since the observed monomorphism as well as average hetero-
zygosity may both be subjected to large sampling errors.

(iii) Stepwise mutation model

For electrophoretic data, however, the stepwise mutation model as
introduced by Ohta and Kimura (1973, 1975) may be more appropriate
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Fin. I .—Relationship between the probability of monomorphism (Pm) and heterozygosity
ratio (H/(l —H)) under four different models: neutral theory of infinite allele
model with constant mutation rate, — — — neutral theory (stepwise mutation model),

neutral theory when mutation rate is distributed as a gamma variate with
coefficient of variation 1, and symmetric overdominant model with s =
and OOOl (ii = lO6 in both cases). In all cases, the criterion for monomorphism is
taken to beg OOl.
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than the infinite allele model (see, e.g. Nei, 1975; Chakraborty and Nei, 1976).
Using Kimura and Ohta's (1975) formulation, we may rewrite equation (2)
under the stepwise mutation model of neutral alleles as

= f(A+B+1) f (1_x)A_lxB_ldx (7)
T'(A)F(B+l) J1—q

where A 4Xev, B [1 +4NeVIl +8Jv]/[J1 +8JVeV 1] and P(),
a gamma function. For numerical computation, equation (7) may be
simplified to

= [l—P(1—q; B, A)] (8)

where

P(x a b) = F(a+b) cx ja_l(1_t)b_ldt
IT(a)IT(b) J0

Under this model, the expected heterozygosity H is given by

H 1_(1/./f+8JVeV).
In fig. 1 we find that the effect of the stepwise mutation model is to

reduce the probability of monomorphism for the same level of average
heterozygosity as compared to the infinite allele model. This is intuitively
clear, since to obtain the same level of observed genetic variability under
the two models, the effective mutation rate in the stepwise model has to
be larger as compared to that of the infinite allele model. This larger
mutation rate in turn reduces the probability of monomorphism.

(iv) S'ynunetric overdominance model

Watterson (1977) recently examined the finite population theory with
a selection model where all heterozygotes are assumed to be of fitness 1 + s
and the homozygotes are with fitness 1. If = 2Xs and M 4Xeu then
the allele frequency distribution in an equilibrium population is given by

1(x) = Mex2x_1(1 —x)M_1 W(o(1 — x)2, M)/W(o, M)
where

W(cr, M) = nO mO (7Y'Cm,nMmIF(2fl+M),
and

Cm,n >1 LIj=1
In the above, however, is taken over vectors (a1, a2, ..., a) such that

a1+a2+... +a = m and a1+2a2+... +na = n (Watterson, 1977). Then
the probability of monomorphism 1m is obtained numerically as

P,, = f tJ?(x)dx
J1—q

= f Q(x)dx+ e_qM
Jl..q r(M)w(a, M)
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where Qjx) (x) — [Me(1 —x)Ml] /[F'(M) W(oM)J. Similarly, the
expected heterozygosity H can be numerically evaluated as

H = I x(1—x)(x)dx
Jo

Cl
= M e_x2(1 _x)M W(ti(1 —x)2, M)/ W(o, M)dx.

Jo
The relationship between 'm and H/( 1 —H) can thus be evaluated for

such a selection model using numerical integration procedures. Fig. 1
presents the result of such computations (dotted lines) for u = 10_6, s = 10
and 00Ol. It is seen again that unless the selection is strong, the relationship
is statistically similar to the neutral predictions. Our numerical compu-
tations also show that for s = u or less the relationship is virtually identical
to that under a neutral model.

TABLE 1

Monomoiphism (Pm) and average heteroçygosity (H) under the neutral model and the
sequentially advantageous mutation model

Probability of monomorphism (Pm)

Average Neutral model Sequentially
heterozygosity (Eq. 2 with advantageous

Cases (H) q = 0.01) mutation model
2Xvs = 0004 0l2l 0532 0541
2Xvs = 0008 0l85 0352 0367

(v) Sequentially advantageous mutations model

The model of sequentially advantageous mutations, as studied by
Chakraborty et al. (1977), assumes that each new mutant occurring at a
locus in a population has a certain selective advantage (s) over the alleles
already existing in the population. Using computer simulations for this
model we generated the steady state distribution of allele frequencies for a
population of effective size (J) 500 at 1000 loci to compute the average
heterozygosities and the probability of monomorphism for two different
selection coefficients (so as to make 2J(vs = 0.004 and 0.008). The results
given in table 1 show that the probability of monomorphism is again too
insensitive to differentiate sequentially advantageous mutant alleles from
the neutral ones.

3. Dxscussio

Electrophoretic surveys indicate that the observed range of average
heterozygosity in natural populations is only 00-03 I (Nei, 1975; Fuerst
et al., 1977). Thus, in this range the expected relationships between mono-
morphism and average heterozygosity (as shown in fig. 1) are surprisingly
similar for these different hypotheses describing the mechanism of the
maintenance of polymorphisms. In order to detect heterotic selection using
such a relationship, the selection coefficient favoring heterozygotes has to
be of the order of at least 10-fold of the reciprocal effective population
size (fig. 1).
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The detection of slightly deleterious mutations by such a relationship
may also be difficult. For example, Li's (1977) computations indicate that
in the case of recessive selection where the selection pressure is small, the
probabilities of monomorphism are O8 123 and 03526 corresponding to
populations with average heterozygosity 00434 and O185, respectively.
Inserting these average heterozygosity values in equation (4) the probabi-
lities of monomorphism under strict neutrality are obtained as O8 115 and
O35 16. Thus, in the observed range of variations of average heterozygosities,
recessive deleterious mutations would be hard to detect unless the selection
coefficients were very large (e.g. larger than the inverse of effective population
size).

Our conclusion, namely the statistical insensitivity of the relationship
between the probability of monomorphism and the heterozygosity under
the different models (unless the selection coefficient is strong) may be viewed
as a reiteration of Morton and Rao's (1975) claim. It may be appropriate
to point out that Morton and Rao inadevertently analysed only a neutral
model with reversible mutations between two possible allelic types. Further-
more, they claimed that the relationship between the probability of mono-
morphism and the heterozygosity as described by equation (4) does not in
fact depend upon the assumption of neutrality since should by definition
have a concave relationship with H, as F,,, must approach zero when H
approaches O5. This holds for only only fixed and small numbers of alleles
per locus. Under the infinite allele model, let us now consider two extreme
types of loci: first, where all alleles at a locus are maintained at equal
frequency. Heterozygosities at such polymorphic loci would all approach
one as the number of alleles increases; second, where a monomorphic locus
is fixed with a single allele. If the genome consists of only these two extreme
types of loci equally frequently, the average heterozygosity H, as well as the
probability of monomorphism 1m' would attain O5 at the same time. This
contradicts the concavity of 'm and H.

Acknowlea'gements.—We are grateful to Dr W.-H. Li for discussions regarding the com-
putations for the overdominant model. This study was supported by Public Health Service
Grants GM 20293, GM 19513 and CA 19311; National Science Foundation Grant DEB
76-06069; and the National Health Institute General Support Grant 5S07 RR 07 14804.

4. REFERENCES

CHAKRABORTY, R., AND NET, M. 1976. Hidden genetic variability within electromorphs in
finite populations. Genetics, 84, 385-393.

CHAKRABORTY, R., FUERST, P. A., AND NEI, M. 1977. A comparative study of genetic variation
within and between populations under the neutral mutation hypothesis and the niodel
of sequentially advantageous mutations. Genetics, 86, sl0-s 11.

CI-TAKEABORTY, R., FUERST, P. A., AND NEI, M. 1978. Statistical studies on protein poly-
morphism in natural populations. II. Gene differentiation between populations.
Genetics, 88, 367-390.

FUERST, P. A., CHAKRABORTY, R., AND NET, M. 1977. Statistical studies on protein poly-
morphism in natural populations. I. Distribution of single locus heterozygosity.
Genetics, 86, 455-483.

KIMURA, so. 1968. Evolutionary rate at the molecular level. .I'Tature, 217, 624-626.
KIMURA, M., AND CROW, j. i'. 1964. The number of alleles that can be maintained in a

finite population. Genetics, 49, 725-738.
KIMURA, M., Mm ONTA, T. 1971. Theoretical Aspects f Population Genetics. Princeton Univer-

sity Press, Princeton, N.J.



HETEROZYGOSITY AND POLYMORPHISM 333

KIMURA, M., AND OTTTA, T. 1975. Distribution of allelie frequencies in a finite population
under stepwise production of neutral alleles. Proc. .Watl. Acad. Sci. USA, 72, 2761-2764.

vi, w.-sr. 1977. Maintenance of genetic variability under mutation and selection pressures
in a finite population. Proc. .Katl. Acod. Sci. USA, 74, 2509-2513.

MORTON, N. E., AND EAD, o. c. 1975. Monomorphism and heterozygosity. Heredity, 34,
427-431.

NET, 55. 1975. Moleculor Populotion Genetics and Evolution. North-Holland, Amsterdam.
NET, 1sT., cHARRABORTY, P.., AND PUEstsT, 5'. A. 1976. Infinite allele model with varying

mutation rate. Proc. .Wotl. Acad. Sci. USA, 73, 4164-4168.
ONTA, T. 1976. Role of very slightly deleterious mutations in molecular evolution and

polysnorphism. Theor. Pop. Biol., 10, 254-275.
0JOTA, T., ANtS KINURA, N. 1973. A model of mutation appropriate to estimate the number

of eleetrophoretieally detectable alleles in a finite population. Genet. Res., 22, 201-204.
saLArDEa, P.. K. 1976. Genie variation in natural populations. In Moleculor Evolution, ed.

F. J. Ayala, pp. 2 1-45. Sinauer Assoe., Sunderland, Mass.
wArraasoN, C. A. 1977. Heterosis or neutrality? Genetics, 85, 789-814.


	HETEROZYGOSITY AND MONOMORPHISM RECONSIDERED
	1. INTRODUCTION
	2. HETEROZYGOSITY AND PROBABJLITY OF MONOMORPHISM
	3. DISCUSSION
	4. REFERENCES


