Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
The evolution of apomixis
Download PDF
Download PDF
  • Original Article
  • Published: 01 August 1981

The evolution of apomixis

  • D R Marshall1 &
  • A H D Brown1 

Heredity volume 47, pages 1–15 (1981)Cite this article

  • 4156 Accesses

  • 61 Citations

  • 6 Altmetric

  • Metrics details

Summary

The selective forces responsible for the evolution of gametophytic apomixis in outbreeding plant populations are analysed in terms of a simple single gene model. In the absence of selection, apomixis inevitably becomes fixed in a population. This conclusion holds regardless of the dominance relations of the alleles specifying apomictic versus sexual seed formation. Substantial heterotic viability selection is required to prevent fixation of recessive and codominant apomictic alleles and maintain a stable polymorphism at the mating system locus. These findings suggest that gametophytic apomixis should be a common mode of reproduction in plant species. Possible factors accounting for the relative paucity of apomictic plants are discussed. It is concluded that one of the major factors hindering the spread of apomixis is its usually complex inheritance and the need to accumulate, in the one individual, two or more mutations affecting meiosis and the reproductive system.

Similar content being viewed by others

Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration

Article 29 March 2021

Diploid aposporous sunflower forms triploid BIII progeny displaying increased apospory levels and non-random genetic mutations

Article Open access 09 February 2025

Pre-breeding in alfalfa germplasm develops highly differentiated populations, as revealed by genome-wide microhaplotype markers

Article Open access 08 January 2025

Article PDF

References

  • Asher, J H. 1970. Parthenogenesis and genetic variability. II. One locus models for various diploid populations. Genetics, 66, 369–391.

    PubMed  PubMed Central  Google Scholar 

  • Asker, S. 1979. Progress in apomixis research. Hereditas, 91, 231–240.

    Article  Google Scholar 

  • Battagalia, E. 1963. Apomixis. In Recent Advances in the Embryology of Angiosperms, ed. P. Maheshwari, 467 pp. International Society of Plant Morphologists, University of Delhi.

    Google Scholar 

  • Casady, A J, Heyne, E G, and Weibel, D E. 1960. Inheritance of female sterility in sorghum. J Hered, 51, 35–38.

    Article  Google Scholar 

  • Charlesworth, B. 1980. The cost of sex in relation to mating system. J Theoret Biol. 84, 655–671.

    Article  CAS  Google Scholar 

  • Clausen, J. 1954. Partial apomixis as an equilibrium system in evolution. Caryologia Suppl, 6, 469–479.

    Google Scholar 

  • Crosby, J L. 1949. Selection of an unfavourable gene complex. Evolution, 3, 212–230.

    Article  CAS  PubMed  Google Scholar 

  • Crow, J F, and Kimura, M. 1965. Evolution in sexual and asexual populations. Amer Nat, 99, 439–450.

    Article  Google Scholar 

  • Crow, J F, and Kimura, M. 1969. Evolution in sexual and asexual populations: A reply. Amer Nat, 103, 89–91.

    Article  Google Scholar 

  • Darlington, C D. 1939. The Evolution of Genetic Systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • De Wet, J M, and Stalker, H T. 1974. Gametophytic apomixis and evolution in plants. Taxon, 23, 689–697.

    Article  Google Scholar 

  • Fisher, R A. 1930. The Genetical Theory of National Selection. Clarendon Press, Oxford.

    Google Scholar 

  • Fisher, R A. 1941. Average excess and average effect of a gene substitution. Ann Eugen, 11, 53–63.

    Article  Google Scholar 

  • Frankel, R, and Galun, E. 1977. Pollination mechanisms, Reproduction and Plant Breeding. Springer-Verlag, New York.

    Book  Google Scholar 

  • Grant, V. 1971. Plant Speciation, 435 pp. Columbia University Press, New York.

    Google Scholar 

  • Gustafsson, A. 1946. Apomixis in the higher plants. I. The mechanism of apomixis. Lunds Univ Arsskr, 43, 1–66.

    Google Scholar 

  • Gustafsson, A. 1947a. Apomixis in higher plants. II. The causal aspect of apomixis. Lunds Univ Arsskr, 43, 71–178.

    Google Scholar 

  • Gustaffson, A. 1947b. Apomixis in higher plants. III. Biotype and species formation. Lunds Univ Arsskr, 44, 183–370.

    Google Scholar 

  • Hanna, W W, Schertz, K F, and Bashaw, E C. 1970. Apospory in Sorghum bicolor (L.) Moench. Science, 170, 338–339.

    Article  CAS  PubMed  Google Scholar 

  • Hayman, B I. 1953. Mixed seifing and random mating when homozygotes are at a disadvantage. Heredity, 7, 185–192.

    Article  Google Scholar 

  • Hayman, B I, and Mather, K. 1953. The progress of inbreeding when homozygotes are at a disadvantage. Heredity, 7, 165–183.

    Article  Google Scholar 

  • Heslop-Harrison, J. 1961. Apomixis, environment and adaptation. In Recent Advances in Botany, Vol. I, pp. 891–895. Proc. 9th. Int. Bot. Cong., University of Toronto Press.

    Google Scholar 

  • Jain, S K. 1976. The evolution of inbreeding in plants. Ann Rev Ecol Syst, 7, 469–495.

    Article  Google Scholar 

  • Jain, S K, and Workman, P L. 1967. Generalized F statistics and the theory of inbreeding and selection. Nature, 214, 674–678.

    Article  CAS  PubMed  Google Scholar 

  • Knox, R B. 1967. Apomixis. Seasonal and population differences in a grass. Science, 157, 325–326.

    Article  CAS  PubMed  Google Scholar 

  • Knox, R B, and Heslop-Harrison, J. 1963. Experimental control of aposporous apomixis in a grass of the Andropogoneae. Botaniska Natiser, 116, 127–141.

    Google Scholar 

  • Lloyd, D G. 1977. Genetic and phenotypic models of natural selection. J Theor Biol, 69, 543–560.

    Article  CAS  PubMed  Google Scholar 

  • Mather, K. 1973. Genetical Structure of Populations, 197 pp. Chapman and Hall, London.

    Google Scholar 

  • Marshall, D R, and Brown, A H D. 1974. Estimation of the level of apomixis in plant populations. Heredity, 32, 321–333.

    Article  Google Scholar 

  • Marshall, D R, and Downes, R W. 1977. A test for obligate apomixis in grain sorghum R473. Euphytica, 26, 661–664.

    Article  Google Scholar 

  • Marshall, D R, and Weir, B S. 1979. Maintenance of genetic variation in apomictic plant populations. I. Single locus models. Heredity, 42, 159–172.

    Article  Google Scholar 

  • Maynard Smith, J. 1968. Evolution in sexual and asexual populations. Amer Nat, 102, 469–473.

    Article  Google Scholar 

  • Maynard Smith, J. 1971a. What use is sex? J Theoret Biol, 30, 319–335.

    Article  Google Scholar 

  • Maynard Smith, J. 1971b. The origin and maintenance of sex. In Group Selection, ed. G. C. Williams Aldine-Atherton, pp. 163–175. Chicago.

  • Maynard Smith, J. 1976. A short-term advantage for sex and recombination through sib-competition. J Theor Biol, 63, 245–258.

    Article  Google Scholar 

  • Maynard Smith, J. 1977. The sex habit in plants and animals. Lecture Notes in Bio-mathematics, 19, 315–331, eds. F. B. Christiansen and T. M. Fenchel. Springer-Verlag, New York.

    Google Scholar 

  • Maynard Smith, J. 1978. The Evolution of Sex, 222 pp. Alden Press, Oxford.

    Google Scholar 

  • Moran, P A P. 1962. The Statistical Processes of Evolutionary Theory. Clarendon Press, Oxford.

    Google Scholar 

  • Muller, H J. 1932. Some genetic aspects of sex. Amer Nat, 8, 118–138.

    Article  Google Scholar 

  • Nygren, A. 1954. Apomixis in angiosperme. II. Bot Rev, 20, 577–649.

    Article  Google Scholar 

  • Nygren, A. 1967. Apomixis in the angiosperms. Handb der Pflanzenphys, 18, 551–596.

    Google Scholar 

  • Powers, L. 1945. Fertilization without reduction in guayule (Parthenium argentatum Gray) and a hypothesis as to the evolution of apomixis and polyploidy. Genetics, 30, 323–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saran, S, and De Wet, J M J. 1970. The mode of reproduction in Dicanthium intermedium (Gramineae). Bull Torry Bot Club, 97, 6–13.

    Article  Google Scholar 

  • Stebbins, G L. 1941. Apomixis in the angiosperms. Bot Rev, 10, 507–542.

    Article  Google Scholar 

  • Stebbins, G L. 1950. Variation and Evolution in Plants, 643 pp. Columbia University Press, New York.

    Google Scholar 

  • Williams, G C. 1975. Sex and Evolution. Princeton University Press, Princeton N.J.

    Google Scholar 

  • Williams, G C, and Mitton, J B. 1973. Why reproduce sexually? J Theoret Biol, 39, 545–554.

    Article  CAS  Google Scholar 

  • Workman, P L, and Jain, S K. 1966. Zygotic selection under mixed random mating and self-fertilisation: Theory and problems of estimation. Genetics, 54, 159–171.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Division of Plant Industry, CSIRO, P.O. Box 1600, Canberra City, Australia

    D R Marshall & A H D Brown

Authors
  1. D R Marshall
    View author publications

    Search author on:PubMed Google Scholar

  2. A H D Brown
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, D., Brown, A. The evolution of apomixis. Heredity 47, 1–15 (1981). https://doi.org/10.1038/hdy.1981.54

Download citation

  • Received: 23 October 1980

  • Issue date: 01 August 1981

  • DOI: https://doi.org/10.1038/hdy.1981.54

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Australian Senecio macrocarpus and S. squarrosus were suggested as apomictic but are fully sexual: evidence from flow cytometric seed screening analyses

    • Patrik Mráz
    • Collin W. Ahrens
    • Elizabeth A. James

    Plant Systematics and Evolution (2024)

  • The Female Gametophyte Characteristics and Gene Expression Analysis Involved in Apomixis of Wild Germplasm Materials of Kentucky Bluegrass in Gansu Province of China

    • Jinqing Zhang
    • Huiling Ma

    Journal of Plant Growth Regulation (2023)

  • Is ploidy status related to growth form? Insights from the alien flora of Kashmir Himalaya

    • Mudasir A. Dar
    • Afshana
    • Zafar A. Reshi

    Acta Physiologiae Plantarum (2021)

  • Genetic homogeneity of a recently introduced pathogen of chickpea, Ascochyta rabiei, to Australia

    • Audrey E. Leo
    • Rebecca Ford
    • Celeste C. Linde

    Biological Invasions (2015)

  • Evolution of gametophytic apomixis in flowering plants: an alternative model from Maloid Rosaceae

    • Nadia Talent

    Theory in Biosciences (2009)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited