Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
A model for spontaneous mutation in Drosophila caused by transposing elements
Download PDF
Download PDF
  • Original Article
  • Published: 01 December 1981

A model for spontaneous mutation in Drosophila caused by transposing elements

  • James N Thompson Jr.1 &
  • R C Woodruff2 

Heredity volume 47, pages 327–335 (1981)Cite this article

  • 549 Accesses

  • 12 Citations

  • Metrics details

Summary

Transposing genetic elements make up a significant proportion of the DNA of at least some eukaryotes. One of the potential side effects of transposition is a high rate of apparently spontaneous mutation. In this paper we consider some of the evolutionary strategies that might be involved in the suppression of transposition, and we outline a model for the control of spontaneous mutation in terms of the regulation of transposition. Specific predictions are based upon the well-characterized genetics of the mutator system associated with hybrid dysgenesis in Drosophila melanogaster, which has many parallels with the expected behaviour of transposing elements.

Similar content being viewed by others

Modelling genetic stability in engineered cell populations

Article Open access 12 June 2023

Multifaceted and extensive behavioral trajectories of genomically diverse Drosophila lines

Article Open access 07 March 2025

Distinct genetic architectures underlie divergent thorax, leg, and wing pigmentation between Drosophila elegans and D. gunungcola

Article 18 September 2021

Article PDF

References

  • Alexander, M L. 1949. Note on gene viability in natural populations of Drosophila. Univ Texas Publ, 4920, 63–69.

    Google Scholar 

  • Ananiev, E V, Gvozdev, V A, Yu Ilyin, V, Tchurikov, N A, and Georgiev, G P. 1978. Reiterated genes with varying location in intercalary heterochromatin regions of Drosophila melanogaster polytene chromosomes. Chromosoma, 70, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Auerbach, C. 1976. Mutation Research. Chapman and Hall, London.

    Book  Google Scholar 

  • Berg, R L. 1965. Studies of mutability in geographically isolated populations of Drosophila melanogaster Meig. Mutation in Population, Symposium on the Mutation Process. Prague. pp. 61–74.

  • Cameron, J R, Loh, E Y, and Davis, R W. 1979. Evidence for transposition of dispersed repetitive DNA families in yeast. Cell, 16, 739–751.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, S N, and Shapiro, J A. 1980. Transposable genetic elements. Sci Amer, 242, 36–45.

    Article  Google Scholar 

  • Crick, F H C. 1979. Split genes and RNA splicing. Science, 204, 264–271.

    Article  CAS  PubMed  Google Scholar 

  • Dawkins, R. 1976. The Selfish Gene. Oxford University Press, London.

    Google Scholar 

  • Doolittle, W F, and Sapienza, C. 1980. Selfish genes, the phenotype paradigm, and genome evolution. Nature, 284, 601–603.

    Article  CAS  PubMed  Google Scholar 

  • Dover, G, and Doolittle, W F. 1980. Modes of genome evolution. Nature, 288, 646–647.

    Article  CAS  PubMed  Google Scholar 

  • Engels, W R. 1979. Extrachromosomal control of mutability in Drosophila melanogaster. Proc Natl Acad Set, USA, 76, 4011–4015.

    Article  CAS  Google Scholar 

  • Farabaugh, P J, and Fink, G R. 1980. Insertion of the eukaryotic transposable element Ty1 creates a 5-base pair duplication. Nature, 286, 352–356.

    Article  CAS  PubMed  Google Scholar 

  • Gehring, W J, and Paro, R. 1980. Isolation of a hybrid plasmid with homologous sequences to a transposing element of Drosophila melanogaster. Cell, 19, 897–904.

    Article  CAS  PubMed  Google Scholar 

  • Golubovsky, M D, Yu Ivanov, N, and Green, M M. 1977. Genetic instability in Drosophila melanogaster: Putative multiple insertion mutants at the singed bristle locus. Proc Natl Acad Sci, USA, 74, 2973–2975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green, M M. 1978. The genetic control of mutation in Drosophila. Stadler Symposium, 10, 95–104.

    Google Scholar 

  • Green, M M, and Shepherd, S H Y. 1979. Genetic instability in Drosophila melanogaster: The induction of specific chromosome 2 deletions by MR elements. Genetics, 92, 823–832.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heffron, F, McCarthy, B J, Ohtsubo, H, and Ohtsubo, E. 1979. DNA sequence analysis of the transposon Tn3: Three genes and three sites involved in transposition of Tn3. Cell, 18, 1153–1163.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, S A, Woodruff, R C, and Thompson, J N, Jr. 1978. Spontaneous chromosome breakage at male meiosis associated with male recombination in Drosophila mlanogaster. Genetics, 88, 93–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ising, G, and Ramel, C. 1976. The behaviour of a transposing element in Drosophila melanogaster. In The Genetics and Biology of Drosophila, eds. M. Ashburner and E. Novitski. Vol. 1b, pp. 947–954. Academic Press, London.

    Google Scholar 

  • Ives, P T. 1950. The importance of mutation rate genes in evolution. Evolution, 4, 236–252.

    Article  Google Scholar 

  • Kidwell, M G, Kidwell, J F, and Sved, J A. 1977. Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics, 86, 813–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh, E G, Jr. 1973. The evolution of mutation rates. Genetics (Suppl.), 73, 1–18.

    Google Scholar 

  • McClintock, B. 1952. Chromosome organization and genic expression. Cold Spring Harbor Symp Quant Biol, 16, 13–47.

    Article  Google Scholar 

  • Mirzabekov, A D. 1981. Mobile genetic elements: new Soviet Studies. Nature, 291, 12.

    Article  CAS  PubMed  Google Scholar 

  • Orgel, L E, and Crick, F H C. 1980. Selfish DNA: the ultimate parasite. Nature, 284, 604–607.

    Article  CAS  PubMed  Google Scholar 

  • Orgel, L E, Crick, F H C, and Sapienza, C. 1980. Selfish DNA. Nature, 288, 645–646.

    Article  CAS  PubMed  Google Scholar 

  • Potter, S S, Brorein, W J, Jr, Dunsmuir, P, and Rubin, G M. 1979. Transposition of elements of the 412, copia, and 297 dispersed repeated gene families in Drosophila. Cell, 17, 415–427.

    Article  CAS  PubMed  Google Scholar 

  • Potter, S, Truett, M, Phillips, M, and Maher, A. 1980. Eukaryotic transposable genetic elements with inverted terminal repeats. Cell, 20, 639–647.

    Article  CAS  PubMed  Google Scholar 

  • Roeder, G S, Farabaugh, P J, Chaleff, D T, and Fink, G R. 1980. The origins of gene instability in yeast. Science, 209, 1375–1380.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, J A. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc Natl Acad Sci, USA, 76, 1933–1937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slatko, B. 1978. Evidence for newly induced genetic activity responsible for male recombination induced in Drosophila melanogaster. Genetics, 90, 105–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer, W P. 1935. The non-random nature of visible mutations in Drosophila. Amer Naturalist, 69, 223–238.

    Article  Google Scholar 

  • Strobel, E, Dunsmuir, P, and Rubin, G M. 1979. Polymorphisms in the chromosomal locations of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell, 17, 429–439.

    Article  CAS  PubMed  Google Scholar 

  • Sturtevant, A H. 1937. Essays on evolution. I. On the effects of selection on mutation rate. Quart Rev Biol, 12, 464–467.

    Article  Google Scholar 

  • Thompson, J N, Jr, and Woodruff, R C. 1978a. Mutator genes: Pacemakers of evolution. Nature, 274, 317–321.

    Article  PubMed  Google Scholar 

  • Thompson, J N, Jr, and Woodruff, R C. 1978b. Chromosome breakage: A possible mechanism for diverse genetic events in outbred populations. Heredity, 40, 153–157.

    Article  PubMed  Google Scholar 

  • Thompson, J N, Jr, and Woodruff, R C. 1980. Increased mutation in crosses between geographically separated strains of Drosophila melanogaster. Proc Natl Acad Sci, USA, 77, 1059–1062.

    Article  PubMed  PubMed Central  Google Scholar 

  • Voelker, R A. 1974. The genetics and cytology of a mutator factor in Drosophila melanogaster. Mutation Res, 22, 265–276.

    Article  CAS  PubMed  Google Scholar 

  • Williams, G C. 1966. Adaptation and Natural Selection. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Williamson, V M, Young, E T, and Ciriacy, M. 1981. Transposable elements associated with constitutive expression of yeast alcohol dehydrogenase II. Cell, 23, 605–614.

    Article  CAS  PubMed  Google Scholar 

  • Woodruff, R C, and Thompson, J N, Jr. 1980. Hybrid release of mutator activity and the genetic structure of natural population. Evolutionary Biology, 12, 129–162.

    Article  Google Scholar 

  • Woodruff, R C, Thompson, J N, Jr, and Lyman, R F. 1979. Intraspecific hybridisation and the release of mutator activity. Nature, 278, 277–279.

    Article  CAS  PubMed  Google Scholar 

  • Woodruff, R C, Slatko, B E, and Thompson, J N, Jr. 1982. Factors affecting mutation rate in natural populations. In The Genetics and Biology of Drosophila, eds. M. Ashburner, H. L. Carson, and J. N. Thompson, Jr. Vol. 3c, in press. Academic Press, London.

    Google Scholar 

  • Yannopoulos, G. 1978. Studies on male recombination in a Southern Greek Drosophila melanogaster population, (c) Chromosomal abnormalities at male meiosis. (d) Cytoplasmic factor responsible for the reciprocal cross effect. Genet Res, Camb, 31, 187–196.

    Article  Google Scholar 

  • Young, M W. 1979. Middle repetitive DNA: A fluid component of the Drosophila genome. Proc Natl Acad Set, USA, 76, 6274–6278.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Zoology, University of Oklahoma, Norman, 73019, Oklahoma, USA

    James N Thompson Jr.

  2. Department of Biological Sciences, Bowling Green State University, Bowling Green, 43403, Ohio, USA

    R C Woodruff

Authors
  1. James N Thompson Jr.
    View author publications

    Search author on:PubMed Google Scholar

  2. R C Woodruff
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, J., Woodruff, R. A model for spontaneous mutation in Drosophila caused by transposing elements. Heredity 47, 327–335 (1981). https://doi.org/10.1038/hdy.1981.95

Download citation

  • Received: 02 April 1981

  • Issue date: 01 December 1981

  • DOI: https://doi.org/10.1038/hdy.1981.95

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Brief temperature stress during reproductive stages alters meiotic recombination and somatic mutation rates in the progeny of Arabidopsis

    • Ramswaroop Saini
    • Amit Kumar Singh
    • Ramamurthy Baskar

    BMC Plant Biology (2017)

  • Molecular cloning and analysis of forked locus in Drosophila ananassae

    • Yasuhiko Hatano

    Molecular and General Genetics MGG (1991)

  • Mdg-1 mobile element polymorphism in selected Drosophila melanogaster populations

    • C. Bi�mont
    • C. Terzian

    Genetica (1988)

  • Copy-number dependent transpositions and excisions of the mdg-1 mobile element in inbred lines of Drosophila melanogaster

    • C Biémont
    • A Aouar

    Heredity (1987)

  • Insertional DNA and spontaneous mutation at the white locus in Drosophila simulans

    • Yoshihiro H. Inoue
    • Masa-Toshi Yamamoto

    Molecular and General Genetics MGG (1987)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited