Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Latitudinal relationships of esterase-6 and phosphoglucomutase gene frequencies in Drosophila melanogaster
Download PDF
Download PDF
  • Original Article
  • Published: 01 December 1981

Latitudinal relationships of esterase-6 and phosphoglucomutase gene frequencies in Drosophila melanogaster

  • J G Oakeshott1,
  • G K Chambers1 nAff2,
  • J B Gibson1 &
  • …
  • D A Willcocks1 

Heredity volume 47, pages 385–396 (1981)Cite this article

  • 537 Accesses

  • 81 Citations

  • Metrics details

Summary

Geographic variation in Esterase-6 (Est-6) and Phosphoglucomutase (Pgm) gene frequencies in Australasian populations of Drosophila melanogaster are compared with analogous data collated from 16 previous reports for North America and Europe/Asia. A large-scale latitudinal cline is found on all three Zoogeographic zones for Est-6 and overall, Est-61·00 frequency increases from about 20 per cent around 20° latitude to about 80 per cent approaching 50° latitude. In contrast, there is no consistent evidence for a latitudinal cline in Pgm gene frequencies in any of the three zones, with Pgm1·00 frequency generally about 85 per cent and Pgm1·20 and Pgm0·70 frequencies each between 5 per cent and 10 per cent. The consistent Est-6 clines are attributed to latitudinal selection gradients but no consistent correlations are found between Est-6 gene frequencies and maximum or minimum temperature or rainfall which might be associated with these gradients. The directions of the Est-6 clines in fact run counter to expectations based on the in vitro thermostabilities of the respective allozymes.

Similar content being viewed by others

Low levels of genetic differentiation with isolation by geography and environment in populations of Drosophila melanogaster from across China

Article 08 March 2021

Continuously fluctuating selection reveals fine granularity of adaptation

Article 14 August 2024

Population genetic differentiation and genomic signatures of adaptation to climate in an abundant lizard

Article Open access 11 March 2022

Article PDF

References

  • Abedin, K, McNamara, S, Osterbur, D, and Steiner, W W M. 1980. Studies on the effect of temperature on fitness and fecundity at the Esterase-6 locus in D. melanogaster. Drosophila Inform Serv, 55, 10–11.

    Google Scholar 

  • Anderson, P R. 1981. Geographic clines and climatic associations of Adh and Gpdh gene frequencies in Drosophila melanogaster. In Genetic Studies of Drosophila Populations, eds. J. B. Gibson and J. G. Oakeshott, pp. 237–250. Australian National University, Canberra.

    Google Scholar 

  • Aslund, S, and Rasmuson, M. 1976. Mating behaviour as a fitness component in maintaining allozyme polymorphism in Drosophila melanogaster. Hereditas, 82, 175–178.

    Article  CAS  PubMed  Google Scholar 

  • Ayala, F J, Tracey, M L, Barr, L G, McDonald, J F, and Perez-Salas, S. 1974. Genetic variation in natural populations of five Drosophila species and the hypothesis of the selective neutrality of protein polymorphisms. Genetics, 77, 343–384.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Band, H T. 1975. A survey of isozyme polymorphism in a Drosophila melanogaster natural population. Genetics, 80, 761–771.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beardmore, J A. 1970. Ecological factors and the variability of gene pools in Drosophila. In Essays in Evolution and Genetics in Honour of Theodosius Dobzhansky, eds. M. K. Hecht and W. C. Steere, pp. 299–314. Appleton-Century-Crofts, New York.

    Chapter  Google Scholar 

  • Birley, A J, and Beardmore, J A. 1977. Genetical composition, temperature, density and selection in an enzyme polymorphism. Heredity, 39, 133–144.

    Article  CAS  PubMed  Google Scholar 

  • Carfagna, M, Fucci, L, Gaudio, L, Pontecorvo, G, and Rubino, R. 1980. Adaptive value of Pgm polymorphism in laboratory populations of Drosophila melanogaster. Genet Res, 36, 265–276.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, B, and Charlesworth, D. 1973. A study of linkage disequilibrium in natural populations of Drosophila melanogaster. Genetics, 73, 351–359.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cochrane, B J, and Richmond, R C. 1979. Studies of Esterase-6 in Drosophila melanogaster. II. The genetics and frequency distributions of naturally occurring variants studied by electrophoretic and heat stability criteria. Genetics, 93, 461–478.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danford, N D, and Beardmore, J A. 1979. Biochemical properties of Esterase-6 in Drosophila melanogaster. Biochem Genet, 17, 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Danieli, G A, and Costa, R. 1977. Transient equilibrium at the Est-6 locus in wild populations of Drosophila melanogaster. Genetica, 47, 37–41.

    Article  Google Scholar 

  • Endler, J A. 1973. Gene flow and population differentiation. Science, 179, 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Franklin, I R. 1981. An analysis of temporal variation at isozyme loci in Drosophila melanogaster. In Genetic Studies of Drosophila Populations, eds. J. B. Gibson and J. G. Oakeshott, pp. 217–236. Australian National University, Canberra.

    Google Scholar 

  • Fucci, L, Gaudio, L, Rao, R, Spano, A, and Carfagna, M. 1979. Properties of two common electrophoretic variants of Phosphoglucomutase in Drosophila melanogaster. Biochem Genet, 17, 825–836.

    Article  CAS  PubMed  Google Scholar 

  • Girard, P, Palabost, L, and Petit, C. 1977. Enzymatic variation at seven loci in nine natural populations of Drosophila melanogaster. Biochem Genet, 15, 589–599.

    Article  CAS  PubMed  Google Scholar 

  • Hollis, R J. 1972. Allozymic variation in D. melanogaster from Virginia. Drosophila Inform Serv, 49, 116.

    Google Scholar 

  • Johnson, F M, and Schaffer, H E. 1973. Isozyme variability in species of the genus Drosophila. VII. Genotype-environment relationships in populations of D. melanogaster from the eastern United States. Biochem Genet, 10, 149–163.

    Article  CAS  PubMed  Google Scholar 

  • Knibb, W R, Oakeshott, J G, and Gibson, J B. 1981. Chromosome inversion polymorphisms in Drosophila melanogaster. I. Latitudinal clines and associations between inversions in Australasian populations. Genetics, in press.

  • Kojima, K, Gillespie, J, and Tobari, Y N. 1970. A profile of Drosophila species' enzymes assayed by electrophoresis. I. Number of alleles, heterozygosities and linkage disequilibrium in glucose metabolising systems and some other enzymes. Biochem Genet, 4, 627–637.

    Article  CAS  PubMed  Google Scholar 

  • Langley, C H, Ito, K, and Voelker, R A. 1977. Linkage disequilibrium in natural populations of Drosophila melanogaster: seasonal variation. Genetics, 86, 447–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langley, C H, Tobari, Y N, and Kojima, K. 1974. Linkage disequilibrium in natural populations of Drosophila melanogaster. Genetics, 78, 921–936.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macintyre, R J, and Wright, T R F. 1966. Responses of Esterase-6 alleles of Drosophila melanogaster and D. simulans to selection in experimental populations. Genetics, 53, 371–387.

    CAS  PubMed  Google Scholar 

  • Minawa, A, and Birley, A J. 1978. The genetical response to natural selection by varied environments. I. Short-term observations. Heredity, 40, 39–50.

    Article  Google Scholar 

  • Morgan, P. 1976. Frequency-dependent selection at two enzyme loci in Drosophila melanogaster. Nature, 263, 765–766.

    Article  CAS  PubMed  Google Scholar 

  • Oakeshott, J G. 1979. Selection affecting enzyme polymorphisms in laboratory populations of Drosophila melanogaster. Oecologia, 43, 341–354.

    Article  CAS  PubMed  Google Scholar 

  • Oakeshott, J G, Gibson, J B, Anderson, P R, Knibb, W R, Anderson, D G, and Chambers, G K. 1981. Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines in Drosophila melanogaster on different continents. Evolution, in press.

  • Pipkin, S B, Franklin-Springer, E, Law, S, and Lubega, S. 1976. New Studies of the alcohol dehydrogenase cline in D. melanogaster from Mexico. J Hered, 67, 258–266.

    Article  CAS  PubMed  Google Scholar 

  • Triantaphyllidis, C D, Christodou, C, and Beckman, L. 1973. Polymorphism at two esterase loci in Drosophila melanogaster from northern Greece. Hereditas, 74, 25–30.

    Article  CAS  PubMed  Google Scholar 

  • Trippa, G. 1971. New mutants of D. melanogaster: PgmA and PgmB. Drosophila Inform Serv, 46, 42.

    Google Scholar 

  • Trippa, G, Catano, A, Lombardozzi, A, and Cicchetti, R. 1978a. A simple approach for discovering common non-electrophoretic enzyme variability: a heat denaturation study in Drosophila melanogaster. Biochem Genet, 16, 299–305.

    Article  CAS  PubMed  Google Scholar 

  • Trippa, G, Danieli, G A, Costa, R, and Scozzari, R. 1978b. Phosphoglucomutase (Pgm) and Esterase-6 (Est-6) alleles in Drosophila melanogaster: an attempt to measure linkage disequilibrium. Genetica, 49, 225–227.

    Article  Google Scholar 

  • Trippa, G, Loverre, A, Barberio, C, Ulizza, L, and Scozzari, R. 1974. Studies on the Phosphoglucomutase (PGM) polymorphism in two successive years in natural populations of Drosophila melanogaster. Acad Naz Lincei Rend Cl Sci Fis Mat Nat Serv, VIII, 56, 89–93.

    Google Scholar 

  • Trippa, G, Santolamazza, C, and Scozzari, R. 1970. Phosphoglucomutase locus in Drosophila melanogaster: linkage and population data. Biochem Genet, 4, 665–669.

    Article  CAS  PubMed  Google Scholar 

  • Voelker, R A, Cockerham, C C, Johnson, F M, Schaffer, H E, Mukai, T, and Mettler, L E. 1978. Inversions fail to account for allozyme clines. Genetics, 88, 515–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilks, A V, Gibson, J B, Oakeshott, J G, and Chambers, G K. 1980. An electrophoretically cryptic alcohol dehydrogenase variant in Drosophila melanogaster. II. Post-electrophoresis heat-treatment screening of natural populations. Aust J Biol Sci, 33, 575–585.

    Article  CAS  Google Scholar 

Download references

Author information

Author notes
  1. G K Chambers

    Present address: Museum of Comparative Zoology, Harvard University, Cambridge, Mass., 02138, USA

Authors and Affiliations

  1. Department of Population Biology, Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra City, A.C.T. 2601, Australia

    J G Oakeshott, G K Chambers, J B Gibson & D A Willcocks

Authors
  1. J G Oakeshott
    View author publications

    Search author on:PubMed Google Scholar

  2. G K Chambers
    View author publications

    Search author on:PubMed Google Scholar

  3. J B Gibson
    View author publications

    Search author on:PubMed Google Scholar

  4. D A Willcocks
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oakeshott, J., Chambers, G., Gibson, J. et al. Latitudinal relationships of esterase-6 and phosphoglucomutase gene frequencies in Drosophila melanogaster. Heredity 47, 385–396 (1981). https://doi.org/10.1038/hdy.1981.99

Download citation

  • Received: 09 July 1981

  • Issue date: 01 December 1981

  • DOI: https://doi.org/10.1038/hdy.1981.99

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • On the Long-term Stability of Clines in Some Metabolic Genes in Drosophila melanogaster

    • Rodrigo Cogni
    • Kate Kuczynski
    • Walter F. Eanes

    Scientific Reports (2017)

  • Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia

    • Ary A. Hoffmann
    • Andrew R. Weeks

    Genetica (2007)

  • Latitudinal clines for nucleotide polymorphisms in the Esterase 6 gene of Drosophila melanogaster

    • Christopher W. Coppin
    • Wendy A. Odgers
    • John G. Oakeshott

    Genetica (2007)

  • An adaptive explanation for geographically structured allozyme variation inDichroplus elongatus (Orthoptera: Acrididae)

    • Andrea S. Sequeira
    • Viviana A. Confalonieri
    • Juan C. Vilardi

    Journal of Genetics (1997)

  • Variation of allozyme loci in populations of Drosophila melanogaster from the former USSR

    • Oleg A Bubli
    • Tatyana A Rakitskaya
    • Alexandra G Imasheva

    Heredity (1996)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited