Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Gynodioecy in Plantago lanceolata L I. polymorphism for plasmon type
Download PDF
Download PDF
  • Original Article
  • Published: 01 December 1982

Gynodioecy in Plantago lanceolata L I. polymorphism for plasmon type

  • J M M van Damme1 nAff2 &
  • W van Delden1 

Heredity volume 49, pages 303–318 (1982)Cite this article

  • 1025 Accesses

  • 76 Citations

  • 1 Altmetric

  • Metrics details

Summary

Studies of the morphological polymorphism for the expression of male sterility in the gynodioecious species Plantago lanceolata revealed two separate series of stamen forms from sterile to fertile. The first type of complete male sterility (MS1) shows a disturbed development of the stamens, which are strongly reduced in size. The second type (MS2) has stamens which are petaloid. In the latter type the corolla and sometimes the pistil are also affected. Evidence is presented that these differences in expression of male sterility are cytoplasmically determined. The plasmon types are designated R and P respectively. In each plasmon type a series of intermediate sex forms occurs. Field counts showed that these intermediates are a non-negligible proportion of most populations. On the average MS1 reaches higher frequencies than MS2. Twenty two out of 27 populations appeared to be polymorphic for plasmon type. The remaining five populations are probably fixed for plasmon P and their distribution over the habitats studied suggests that the fitnesses of the different sex genotypes depend on environmental conditions.

Similar content being viewed by others

The evolution and maintenance of trioecy with cytoplasmic male sterility

Article Open access 14 October 2024

Island-specific evolution of a sex-primed autosome in a sexual planarian

Article Open access 01 June 2022

Evidences for a role of two Y-specific genes in sex determination in Populus deltoides

Article Open access 18 November 2020

Article PDF

References

  • Alexander, M P. 1969. Differential staining of aborted and nonaborted pollen. Stain Techn, 44, 117–122.

    Article  CAS  Google Scholar 

  • Arroyo, M T K, and Raven, P H. 1975. The evolution of subdioecy in morphologically gynodioecious species of Fuchsia sect. Encliandra (Onagraceae). Evolution, 29, 500–511.

    Article  Google Scholar 

  • Baker, H G. 1963. Evolutionary mechanisms in pollination biology. Science, 139, 877–883.

    Article  CAS  Google Scholar 

  • Bartlett, H H. 1911. On gynodioecism in Plantago lanceolata. Rhodora, 13, 199–206.

    Google Scholar 

  • Blaringhem, L. 1923. Etudes sur le polymorphisme floral. IV. Sexualité et métamorphose des épis de Plantago lanceolata L. Bull Soc botan France, 70, 717–725.

    Article  Google Scholar 

  • Brockmann, I, and Bocquet, G. 1978. Ökologische Einflüsse auf die Geschlechtsverteilung vei Silene vulgaris (Moench) Garcke (Caryophyllaceae). Ber Deutsch Bot Ges, 91, 217–230.

    Google Scholar 

  • Caspari, E, Watson, G S, and Smith, W. 1966. The influence of cytoplasmic pollen sterility on gene exchange between populations. Genetics, 53, 741–746.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaplin, J F. 1964. Use of male sterile tobacco in the production of hybrid seed. Tobacco Sci, 8, 105–109.

    Google Scholar 

  • Charlesworth, B, and Charlesworth, D. 1978a. A model for the evolution of dioecy and gynodioecy. Amer Nat, 112, 975–997.

    Article  Google Scholar 

  • Charlesworth, D. 1981. A further study of the problem of the maintenance of females in gynodioecious species. Heredity, 46, 27–39.

    Article  Google Scholar 

  • Charlesworth, D, and Charlesworth, B. 1978b. Population genetics of partial male-sterility and the evolution of monoecy and dioecy. Heredity, 41, 137–153.

    Article  Google Scholar 

  • Charlesworth, D, and Ganders, F R. 1979. The population genetics of gynodioecy with cytoplasmic-genic male-sterility. Heredity, 43, 213–218.

    Article  Google Scholar 

  • Coleman, N. 1876. Plantago lanceolata L. Bot Bull, 1, 45.

    Google Scholar 

  • Connor, H E. 1973. Breeding systems in Cortaderia (Gramineae). Evolution, 27, 663–678.

    Article  CAS  Google Scholar 

  • Correns, C. Die Vererbung der Geschlechtsformen bei den gynodiöcischen Pflanzen. Ber Deutsch Bot Ges, 24, 459–474.

  • Correns, C. 1908. Die Rolle der männlichen Keimzellen bei der Geschlechtsbestimmung der gynodioecischen Pflanzen. Ber Deutsch Bot Ges, 26a, 686–701.

    Google Scholar 

  • Costatino, R F. 1971. Genetic consequences of the couplet cytoplasmic pollen sterility and pollen migration. Genetics, 68, 313–321.

    Google Scholar 

  • Darwin, C. 1877. Different Forms of Flowers on Plants of the Same Species. John Murray, London.

    Google Scholar 

  • Delannay, X, Gouyon, P H, and Valdeyron, G. 1981. Mathematical study of the evolution of gynodioecy with cytoplasmic inheritance under the effect of a nuclear restorer gene. Genetics, 99, 169–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dommee, B, Assouad, M W, and Valdeyron, G. 1978. Natural selection and gynodioecy in Thymus vulgaris L. Bot J Linn Soc, 77, 17–28.

    Article  Google Scholar 

  • Edwardson, J R. 1970. Cytoplasmic male sterility. Bot Rev, 36, 341–420.

    Article  Google Scholar 

  • Frankel, R, and Galun, E. 1977. Pollination Mechanisms, Reproduction and Plant Breeding. Monographs on Theoretical and Applied Genetics 2, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Ganders, F R. 1978. The genetics and evolution of gynodioecy in Nemophila menziesii (Hydrophyllaceae). Can J Bot, 56, 1400–1408.

    Article  Google Scholar 

  • Georgescu, C M, Römer, D, and Olteanu, Gh. 1979. Peroxidase activity as a possible test for distinguishing S-plasm from N-plasm in sugar beet (Beta vulgaris L.). Euphytica, 28, 779–784.

    Article  CAS  Google Scholar 

  • Gottschalk, W, and Kaul, M L H. 1974. The genetic control of microsporogenesis in higher plants. Nucleus (Calcutta), 17, 133–166.

    Google Scholar 

  • Grun, P. 1976. Cytoplasmic Genetics and Evolution. Columbia Univ. Press, New York.

    Google Scholar 

  • Hope-Simpson, J F. 1939. Reduction of the androecium in Plantago lanceolata L. J Bot, 77, 290–293.

    Google Scholar 

  • Jones, H A, and Emsweller, S L. 1936. A male-sterile onion. Proc Am Soc hort Sci, 34, 582–585.

    Google Scholar 

  • Kemble, R J. 1980. A rapid, single leaf assay for detecting the presence of “S”-male-sterile cytoplasm in maize. Theor Appl Genet, 57, 97–100.

    Article  CAS  Google Scholar 

  • Kemble, R J, Gunn, R E, and Flavell, R B. 1980. Classification of normal and male-sterile cytoplasms in maize. II. Electrophoretic analysis of DNA species in mitochondria. Genetics, 95, 451–458.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kheyr-Pour, A. 1980. Nucleo-cytoplasmic polymorphism for male sterility in Origanum vulgare L. J Hered, 71, 253–260.

    Article  Google Scholar 

  • Kheyr-Pour, A. 1981. Wide nucleo-cytoplasmic polymorphism for male sterility in Origanum vulgare L. J Hered, 72, 45–51.

    Article  Google Scholar 

  • Krohne, D T, Baker, I, and Baker, H G. 1980. The maintenance of the gynodioecious breeding system in Plantago lanceolata L. Amer Midi Natur, 103, 269–279.

    Article  Google Scholar 

  • Lewis, D. 1941. Male sterility in natural populations of hermaphrodite plants. New Phytol, 40, 56–63.

    Article  Google Scholar 

  • Lloyd, D G, and Webb, C J. 1977. Secondary sex characters in seed plants. Bot Rev, 43, 177–216.

    Article  Google Scholar 

  • Ludwig, F. 1879. Ueber die Blütenformen von Plantago lanceolata L. und die Erscheinung der Gynodiöcie. Z ges Naturwiss, 52, 441–449.

    Google Scholar 

  • Meyer, J R, and Meyer, N G. 1961. Cytoplasmic male sterility in cotton.. Genetics, 46, 883.

    Google Scholar 

  • Meyer, V G. 1966. Flower abnormalities. Bot Rev, 32, 165–218.

    Article  Google Scholar 

  • Morelock, T E. 1974. Influence of Cytoplasmic Source on Expression of Male Sterility in Carrot, D carota. Ph.D. Thesis, Univ. of Wisconsin.

    Google Scholar 

  • Primack, R B. 1978. Evolutionary aspects of wind pollination in the genus Plantago (Plantaginaceae). New Phytol, 81, 449–458.

    Article  Google Scholar 

  • Pearson, O H. 1972. Cytoplasmically inherited male sterility characters and flavor components from the species cross Brassica nigra (L.) Koch × B. oleracea L. J Am Soc Hort Sci, 97, 397–402.

    Google Scholar 

  • Ross, M D. 1967. Two genetic mechanisms governing outbreeding in Plantago lanceolata. Genetics, 56, 584–585.

    Google Scholar 

  • Ross, M D. 1969. Digenic inheritance of male sterility in Plantago lanceolata. Can J Genet Cytol, 11, 739–744.

    Article  Google Scholar 

  • Ross, M D. 1973. Inheritance of self-incompatibility in Plantago lanceolata. Heredity, 30, 169–176.

    Article  Google Scholar 

  • Ross, M D. 1978. The evolution of gynodioecy and subdioecy. Evolution, 32, 174–188.

    Article  CAS  Google Scholar 

  • Ross, M D, and Weir, B S. 1976. Maintenance of males and females in hermaphrodite populations and the evolution of dioecy. Evolution, 30, 425–441.

    Article  CAS  Google Scholar 

  • Schulz, A. 1888. Beitäage zur Kenntnis der Bestäubungseinrichtungen und Geschlechtsverteilung bei den Pflanzen. Bibl Botan, 10, 90–93.

    Google Scholar 

  • Stout, A B. 1919. Intersexes in Plantago lanceolata. Bot Gaz, 68, 109–133.

    Article  Google Scholar 

  • Troelstra, S R, Sluimer, L, Smant, W, Wagenaar, R, and Van Der Meulen, M A. 1981. On the soil chemistry of natural habitats of Plantago species and Hypochaeris radicata in various parts of the Netherlands in relation to the chemical composition of the plants. Verh Kon Ned Acad Wetensch, Afd Natuurk 2e Reeks, 77, Progress Report 1980 I.O.O., 20–32.

    Google Scholar 

  • Turrill, W B. 1919. Female flowers in Plantago lanceolata. J Bot, 57, 196.

    Google Scholar 

  • Valdeyron, G, Assouad, W, and Dommee, B. 1970. Coexistance des déterminismes genique et cytoplasmique de la sterilité male. In La Sterilité Male Chez les Plantes Horticoles. Eucarpia meeting Versailles, 175–186.

    Google Scholar 

  • Van Der Mer, Q P. 1977. Ui. IVT Annual Report 1976, 25–27.

    Google Scholar 

  • Watson, G S, and Caspari, E. 1960. The behaviour of cytoplasmic pollen sterility in populations. Evolution, 14, 56–63.

    Article  Google Scholar 

  • Webb, C J. 1979. Breeding systems and the evolution of dioecy in New Zealand apioid Umbelliferae. Evolution, 33, 662–672.

    Article  CAS  Google Scholar 

Download references

Author information

Author notes
  1. J M M van Damme

    Present address: Institute of Ecological Research, Duinzoom 20a, 3233 EG, Oostvoorne, The Netherlands

Authors and Affiliations

  1. Department of Genetics, University of Groningen, Biology Centre, Kerklaan 30, Haren, 9751 NN, The Netherlands

    J M M van Damme & W van Delden

Authors
  1. J M M van Damme
    View author publications

    Search author on:PubMed Google Scholar

  2. W van Delden
    View author publications

    Search author on:PubMed Google Scholar

Additional information

Grassland Species Research Group Publication No. 54.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Damme, J., van Delden, W. Gynodioecy in Plantago lanceolata L I. polymorphism for plasmon type. Heredity 49, 303–318 (1982). https://doi.org/10.1038/hdy.1982.104

Download citation

  • Received: 30 June 1982

  • Issue date: 01 December 1982

  • DOI: https://doi.org/10.1038/hdy.1982.104

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Progressive programmed cell death inwards across the anther wall in male sterile flowers of the gynodioecious plant Plantago lanceolata

    • Jacqueline M. Nugent
    • Tómas Byrne
    • Elaine Stafford

    Planta (2019)

  • Sexually-trimorphic interactions with colour polymorphism determine nectar quality in a herbaceous perennial

    • Sandra Varga
    • Carl D. Soulsbury

    Scientific Reports (2017)

  • Frequent, geographically structured heteroplasmy in the mitochondria of a flowering plant, ribwort plantain (Plantago lanceolata)

    • N Levsen
    • R Bergero
    • K Wolff

    Heredity (2016)

  • Patterns of male sterility within and among populations of the distylous shrub Erythroxylum havanense (erythroxylaceae)

    • Eduardo Cuevas
    • Francisco Molina-Freaner
    • César A. Domínguez

    Plant Ecology (2005)

  • Multiple CMS–restorer gene polymorphism in gynodioecious Plantago coronopus

    • J M M van Damme
    • M P J Hundscheid
    • H P Koelewijn

    Heredity (2004)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited