Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Clonal diversity in taraxacum officinale (compositae), an apomict
Download PDF
Download PDF
  • Original Article
  • Published: 01 August 1984

Clonal diversity in taraxacum officinale (compositae), an apomict

  • Jennifer C Lyman1 &
  • Norman C Ellstrand1 

Heredity volume 53, pages 1–10 (1984)Cite this article

  • 2072 Accesses

  • 78 Citations

  • 3 Altmetric

  • Metrics details

Summary

Allozyme analysis, morphological characters, and histocompatibility relationships have revealed unexpected amounts of clonal diversity within and among populations of unisexual animals. Plant studies, likewise, have shown that genetic diversity exists in populations of plants that have restricted recombination. However, no work has been done which investigates the extent of genotypic diversity within and among populations of an obligate apomict.

This study surveyed 22 North American populations of Taraxacum officinale, an obligate gametophytic apomict. Over 20 individuals from each population were assayed electrophoretically for three enzyme systems representing five different migration zones. Seed colour was used to determine seven phenological classes that, when combined with the allozyme morphs, resulted in 47 discernible clones among 518 individuals sampled. Chromosome analysis revealed the ploidy level to be triploid in all cases.

The number of clones per population ranged from 1-13, with a mean of 5·0. Sixty-six per cent of the clones were restricted to single populations, and the mean number of populations containing a particular clone is 2·1. One widespread clone was found in all but three of the populations. Diversity values, expressed as clones per individual, indicate that T. officinale proved to be more genotypically diverse than other clonal plants previously studied. Spearman's Rank Correlation test failed to show a correlation of diversity with latitude or elevation.

Similar content being viewed by others

Pre-breeding in alfalfa germplasm develops highly differentiated populations, as revealed by genome-wide microhaplotype markers

Article Open access 08 January 2025

Reproductive strategies and their consequences for divergence, gene flow, and genetic diversity in three taxa of Clarkia

Article 12 September 2023

Phytochemical profiling, antioxidant potential, and UHPLC-HRMS analysis of Phlomis genus aerial parts for therapeutic applications

Article Open access 25 February 2025

Article PDF

References

  • Babcock, E B, and Stebbins, G L. 1938. The American species of Crepis. Their interrelationships and distribution as affected by polyploidy and apomixis. Carnegie Inst Wash Publ No 504.

  • Baker, H G. 1959. Reproductive methods as factors in speciation in flowering plants. Cold Spring Harbor Symp Quant Biol, 24, 177–191.

    Article  CAS  PubMed  Google Scholar 

  • Black, R, and Johnson, M S. 1979. Asexual vivipary and population genetics of Actinia tenebrosa. Marine Biol, 53, 27–31.

    Article  Google Scholar 

  • Christensen, B, Berg, M, and Jelnes, J. 1978. A comparative study on enzyme polymorphism in sympatric diploid and triploid forms of Lumbricillus lineatus (Enchytraeidae, Oligochaeta). Hereditas, 44, 169–176.

    Google Scholar 

  • Christensen, B, Berg, M, and Jelnes, J. 1980. Recombination system and population structure in Oenothera. Evolution, 34, 923–933.

    Article  Google Scholar 

  • Christensen, B, Berg, M, and Jelnes, J. 1982. Genotypic diversity in Oenothera laciniata (Onagraceae), a permanent translocation heterozygote. Evolution, 36, (1), 63–69.

    Article  Google Scholar 

  • Ellstrand, N C, and Levin, D A. 1980. Recombination system and population structure in Oenothera. Evolution, 34, 923–933.

    Article  PubMed  Google Scholar 

  • Ellstrand, N C, and Levin, D A. 1982. Genotypic diversity in Oenothera laciniata (Onagraceae), a permanent translocation heterozygote. Evolution, 36, 63–69.

    Article  PubMed  Google Scholar 

  • Ford, H. 1981. Competitive relationships amongst apomictic dandelions. Biol J Linn Soc, 15, 355–368.

    Article  Google Scholar 

  • Fryxell, P A. 1957. Mode of reproduction in higher plants. Bot Rev, 23, 135–233.

    Article  Google Scholar 

  • Grant, V. 1981. Plant Speciation, 2nd ed., Columbia Univ. Press, New York.

    Google Scholar 

  • Grant, V, and Grant, K. 1956. Genetic and taxonomic studies in Gilia. VIII. The Cobwebby Gilias. Aliso, 3, 203–287.

    Article  Google Scholar 

  • Gustafsson, A. 1946. Apomixis in Higher Plants. Lund, C. W. K. Glerrup.

    Google Scholar 

  • Hancock, J F, Jr, and Wilson, R E. 1976. Biotype selection in Erigeron annuus during old field succession. Bull Torrey Bot Club, 103, 122–125.

    Article  Google Scholar 

  • Harberd, D J. 1961. Observations on population structure and longevity of Fustuca rubra L. New Phytol, 60, 184–206.

    Article  Google Scholar 

  • Harberd, D J. 1967. Observation on natural clones in Holcus mollis. New Phytol, 66, 401–408.

    Article  Google Scholar 

  • Heywood, J S. 1980. Genetic correlates of edaphic differentiation and endemism in Gaillardia. Ph.D. dissertation, Univ. of Texas, Austin.

  • Jaenike, J, Parker, E D, Jr, and Selander, R K. 1980. Clonal niche structure in the parthenogenetic earthworm Octolasian tyrtaeum. Am Natur, 116, 196–205.

    Article  Google Scholar 

  • Levin, D A. 1975. Genie heterozygosity and protein polymorphism among local populations of Oenothera biennis. Genetics, 79, 477–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levin, D A, and Crepet, W L. 1973. Genetic variation in Lycopodium lucidulum: a phylogenetic relic. Evolution, 27, 622–632.

    PubMed  Google Scholar 

  • Levin, D A, and Kerster, H W. 1971. Neighborhood structure in plants under diverse reproductive methods. Am Natur, 105, 345–354.

    Article  Google Scholar 

  • Löve, A, and Löve, D. 1975. Plant Chromosomes. J. Cramer, Vaduz.

    Google Scholar 

  • Munz, P A. 1968. A California Flora. Univ. Calif. Press, Berkeley.

    Google Scholar 

  • Naylor, E. 1941. The proliferation of dandelions from the roots. Bull Torrey Bot Club, 68, 351–358.

    Article  Google Scholar 

  • Parker, E D, and Selander, R K. 1976. The organization of genetic diversity in the parthenogenetic lizard Cnemidophorus tessalatus. Genetics, 84, 791–805.

    PubMed  PubMed Central  Google Scholar 

  • Richards, A J. 1972. The karyology of some Taraxacum species from alpine regions of Europe. Bot J Linn Soc, 65, 47–59.

    Article  Google Scholar 

  • Roose, M L, and Gottlieb, L D. 1976. Genetic and biochemical consequences of polyploidy in Tragopogon. Evolution, 30, 818–830.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, R J. 1977. Evolution and ecology of unisexual fishes. Evol Biol, 10, 277–331.

    Google Scholar 

  • Sheldon, J, and Burrows, F M. 1973. The dispersal effectiveness of the achene pappus units of selected Compositae in steady winds with convection. New Phytol, 72, 665–675.

    Article  Google Scholar 

  • Silander, J A. 1979. Microevolution and clone structure in Spartina patens. Science, 203, 658–660.

    Article  CAS  PubMed  Google Scholar 

  • Solbrig, O T. 1971. The population biology of dandelions. Am Sci, 59, 686–694.

    Google Scholar 

  • Solbrig, O T, and Simpson, B B. 1974. Components of regulation of a population of dandelions in Michigan. J Ecol, 62, 473–486.

    Article  Google Scholar 

  • Solbrig, O T, and Simpson, B B. 1977. A garden experiment on competition between biotypes of the common dandelion (Taraxacum officinale). J Ecol, 65, 427–430.

    Article  Google Scholar 

  • Sorenson, T, and Gudjonsson, G. 1946. Spontaneous chromosome aberrants in apomictic Taraxaca. Kong. danske Vid. Seleske Biol Skrifte, 4, 1–48.

    Google Scholar 

  • Steiner, E, and Levin, D A. 1977. Allozyme, SI gene, cytological and morphological polymorphism in a population of Oenothera biennis. Evolution, 31, 127–133.

    Article  PubMed  Google Scholar 

  • Suomalainen, E, Saura, A, and Lokki, J. 1977. Evolution of parthenogenetic insects. Evol Biol, 10, 209–257.

    Google Scholar 

  • Valentine, D, and Richards, A J. 1967. Sexuality and apomixis in Taraxacum. Nature, 214, 114.

    Article  Google Scholar 

  • Vrijenhoek, R C. 1978. Coexistence of clones in a heterogeneous environment. Science, 199, 549–552.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Lin, Bradshaw, A D, and Thurman, D A. 1975. The potential for evolution of heavy metal tolerance in plants. III. The rapid evolution of copper tolerance in Agrostis stolonifera. Heredity, 32(2), 165–187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Botany and Plant Sciences, University of California, Riverside, 92521, California, USA

    Jennifer C Lyman & Norman C Ellstrand

Authors
  1. Jennifer C Lyman
    View author publications

    Search author on:PubMed Google Scholar

  2. Norman C Ellstrand
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyman, J., Ellstrand, N. Clonal diversity in taraxacum officinale (compositae), an apomict. Heredity 53, 1–10 (1984). https://doi.org/10.1038/hdy.1984.58

Download citation

  • Received: 09 August 1983

  • Issue date: 01 August 1984

  • DOI: https://doi.org/10.1038/hdy.1984.58

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Invasion success of a Lessepsian symbiont-bearing foraminifera linked to high dispersal ability, preadaptation and suppression of sexual reproduction

    • Débora S. Raposo
    • Rebecca A. Zufall
    • Raphaël Morard

    Scientific Reports (2023)

  • First account of vivipary in Saussurea lappa (Decne.) Sch. Bip. (Asteraceae)

    • Rajendra S. Chauhan
    • Y. M. Bahuguna
    • J. Hugo Cota-Sánchez

    Brazilian Journal of Botany (2018)

  • Hybridization rate and genotypic diversity of apomictic hybrids between native (Taraxacum japonicum) and introduced (T. officinale) dandelions in western Japan

    • Shuhei Matsuyama
    • Miki Morimoto
    • Akira Itoh

    Conservation Genetics (2018)

  • Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives

    • Yingxiao Zhang
    • Brian J. Iaffaldano
    • Katrina Cornish

    BMC Plant Biology (2017)

  • Genome size variation among common dandelion accessions informs their mode of reproduction and suggests the absence of sexual diploids in North America

    • Brian J. Iaffaldano
    • Yingxiao Zhang
    • Katrina Cornish

    Plant Systematics and Evolution (2017)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited